Appendix D - SafeWork NSW Dangerous Goods Search

Our Ref: D17/222730 Your Ref: Iain Lindley 10 October 2017

Attention: lain Lindley GHD Pty Ltd 3/200 Crown Street WOLLONGONG NSW 2500

Dear Mr Lindley

RE SITE: 1-21 Dillwynnia Grove, Heathcote NSW 2233

I refer to your site search request received by SafeWork NSW on 5 October 2017 requesting information on Storage of Hazardous Chemicals for the above site.

A search of the records held by SafeWork NSW has not located any records pertaining to the above mentioned premises.

For further information or if you have any questions, please call us on 13 10 50 or email <u>licensing@safework.nsw.gov.au</u>

Yours sincerely

Customer Service Officer Customer Experience - Operations SafeWork NSW Appendix E - Council Records Extract

Heathcote Hall Brief History of Council involvement since October 1998 Update by Environmental Compliance Unit

1998

October

- Site Inspection by the Environmental Compliance Unit (KA), Environmental Health Officer (RB) and Animal Controller (TH).
- □ Comprehensive report outlining non-compliance issues (KA).

November

- □ Further discussions with Brett Stratten
- Meeting with General Manager requesting that a report be prepared for Council to discuss the issues and a range of options.
- Correspondence from Abbott Tout Solicitors to the Heritage Council informing them of the state of disrepair and the unlawful uses of the property.

1999

January

□ Correspondence from Mr Stratten and petition.

February

 Correspondence from Mr Stratten that he would like to address the Council meeting and representations received from Mrs Lorna Stone regarding the unlawful uses of Heathcote Hall.

March

- Further correspondence from Abbott Tout Solicitors to the Heritage Council asking for a response.
- Report to Council, EHC210-99: Alleged unlawful land uses at 'Heathcote Hall' on 8 March 1999.
 - > Council Resolutions: dated 15 March 1999
 - 1. That the report prepared by the Environmental Compliance Unit (ECU) in respect to the alleged

unlawful land uses at the 'Heathcote Hall' estate Lots 1 & 2 DP 725184 (No 1-21) Dillwynnia Grove Heathcote be received and noted;

- 2. That the concurrence of the Heritage Council of NSW a regime of Orders pursuant to the EPAA and the LGA be pursued by the ECU against the owners of the 'Heathcote Hall' Mr J Farrelly seeking the cessation of the commercial horse boarding facility, removal of unauthorised buildings, removal of waste and fill material and the eradication of noxious weeds.
- That Council requests the Heritage Council to pursue the matter of the demolition of the old coach house, which had been covered by a Permanent Conservation Order under s44 of the *Heritage Act* 1977 (NSW), and such demolition was unauthorised, Council expresses its grave concern at the loss of this heritage building from its shire, and its history.
- 4. That Council expresses its concern to the Heritage Council in regard to Heathcote Hall, (which is greatly valued by the Sutherland Shire Historical Society, and Shire residents) which has fallen into such a state of disrepair. It should be noted that Heritage Assistance Grants are available for such work, and the owner should be urged to carry out necessary repairs.
- Response from Heritage Council stating that the 'Heathcote Hall is not in imminent danger. The Heritage Council also acknowledged that the current owners would probably not undertake further conservation work. The Heritage Council also indicates that the best course of action is to support actions proposed in the management plan.

April

- Site Inspection with Maxine Farrelly outlining Council's intention to give Notices and Orders to cease using the property for Commercial horse stabling and remove unlawful structures.
- Documents received proving that Maxine Farrelly has power of attorney of Joseph Farrelly.
- □ Notices issued (dated 13 April 1999) pursuant to:
 - Environmental Planning and Assessment Act 1979 (NSW)
 - Order 1- Cease the use of the premises for the purpose of a commercial horse stabling operation;

- Order 2 Demolish the horse stables in the grounds of the subject premises;
- Order 12- restore the premises to their original condition by removing the fill material placed in the southwest corner of the premises;
- Local Government Act 1993 (NSW)
- Order 21 remove from the premises all accumulations of horse manure form the enclosures on the premises & remove from the premises all accumulations of vegetative material whether alive or dead which are likely to cause harbourage for rubbish or vermin.
- Order 22 Remove the waste, comprising disused and/or second hand building materials (excluding materials originating form the coach house) and dilapidated and/or abandoned motor vehicles or ancillary parts and accessories or machinery from the subject premises and dispose of this waste at a regional tipping facility.

May

- Orders sent to the Heritage Council for their concurrence pursuant to s121S (3) of the *Heritage Act 1977* (NSW).
- □ Correspondence from Mr Stratten.

June

- Discussions with Heritage Council stating that there were some concerns with respect to 'Heathcote Hall' and that the Heritage Council will formally reply to the letter sent with respect of the intended Orders.
- Discussions with Glen Cowell expressing concern that the Orders should not be given as the horse stables are covered by the PCO and that she would like to speak with Paul Vergotis before the orders are given.
- Response from the Heritage Council outlining concerns about orders being carried out which may affect the heritage significance of the site. The Heritage Council was also concerned about the coach house, which was unlawfully demolished.
- □ Working bee organised by Glen Cowell attempts to clean up the site.

August

 A meeting was held with Glen Cowell, Paul Vergotis, John Brunton and John Rayner to discuss the issues. It was apparent from the meeting that

Ms Cowell is concerned that the removal of the stables might impact on the heritage significance of the site and that the Conservation Management Plan, which she is drafting, should be viewed before any decision is made. This report is due out in April 2000.

September

□ Further correspondence from Mr Stratten.

November

- □ Representations made to Ian McManus MP from Mr Stratten.
- Correspondence received from Glen Cowell outlining her objection to the removal of the stables and the cessation of the use of the horse stables. This correspondence also included a petition signed by over 950 people.
- Representations received from Glen Cowell in response to Notices issued in April 1999. Reasons put forward for not issuing the orders include:
 - The age and physical condition of the owners;
 - The difficult economic position of the owners;
 - The owners desire to retain the property;
 - The fact that the stables have been an ancillary use of the building since the 1880s;
 - The rights of the owners to conduct certain activities on their premises; and
 - The responsibilities of the community to assist the owners of a heritage item to remain in their home.

December

- Report to Council, EHC130-00: Hearing and Consideration of Representations made on behalf of Mr Joseph Farrelly in relation to Notices of Intention to Give Orders – Heathcote Hall Estate.
 - Council Resolutions: (dated 20 December 1999)
 - 1. That pursuant to s135(1) of the LGA Orders 21 & 22 pursuant to s124 of the LGA not be given in relation to the Heathcote Hall Estate;
 - That pursuant to s121K(1)(c) of the EPAA, Orders 1, 2 & 12 pursuant to s121B of the EPAA not be given in relation to the Heathcote Hall Estate;
 - 3. That approval in principle be given to the establishment of a working party to facilitate the development of a rehabilitation Management plan for

the Heathcote Hall Estate and the implementation of such a plan. The composition of the working party should be made up of representatives from:

- (a) the owner of the subject premises;
- (b) the Heritage Office of NSW;
- (c) Sutherland Shire Council, including ward Councillors and other interested Councillors;
- (d) The Heathcote Stables;
- (e) The residents of Dillwynnia Grove, Tecoma Street and Boronia Grove and
- (f) The Sutherland Shire Historical Society;
- 4. That the working party give priority to introducing a program to remove all of the horses, undertake a general clean up of the area and the eradication of the weeds; and
- 5. That the working party gives thought to the future ownership of the property.
- □ Further correspondence from the Heritage Council asking for further information concerning the coach house.

2000

April

□ Working Party holds inaugural meeting.

June

 Further complaints from Mr Stratten and numerous enquires received from Councillors.

July

□ Site inspection by Council Officers and Councillors.

Heathcote Hall History and File Investigation from July 1945 to September 1998

1945

July

• "Notice of Transfer of Land" to Mrs Farrelly.

1972

February

Heathcote Hall proclaimed a place of "historical interest".

October

- Letter from Council to the National Trust of Australia enquiring about a proclamation under clause 38 of the Country of Cumberland Planning Scheme Ordinance.
- Acknowledging Council's letter but acknowledging that an inspection had not taken place.

December

 Letter from the National Trust of Australia (NSW) that Heathcote Hall had been given a "C" classification with the proviso that it could be considered for a "B" classification if restored.

1973

February

- The recommendation of the National Trust of Australia (NSW) incorporated into Council minutes.
- □ Article concerning the "Shire's Historic Mansion"

March

 Article in Newspaper relating to the historical significance of Heathcote Hall.

April

□ Letter to the State Planning Authority of NSW relating to the recommendations of the National Trust of Australia (NSW).

May

The Development Committee Minute 45 adopts the above recommendation.

November

- Letter of complaint from a nearby resident complaining about the noise emanating from the premises. The operation of industry appeared to be present at the site. The construction and storage of timber pallets seemed to being carried out at the site.
- Site inspection of the premises revealed the presence of timber pallets and seemed to intensify since the last inspection. A recommendation was made to send a letter to the owners of the premises.

December

 Letter sent to the owners of Heathcote Hall reminding them of their responsibilities in relation to the residential zone.

April

1974

Letter sent to Mr Farrelly demanding he stop using the premises for the timber pallets. If he does not stop, legal proceedings were to be instigated.

May

Memo to file recommending legal proceedings be commenced against the owners in relation to the timber pallets. A written undertaking from Mr & Mrs Farrelly was given to Council saying they would cease the use by May.

1978

January

 Memo from Health Surveyor noting the presence of horse stables at Heathcote Hall. The matter referred to the health surveyor.

February

 A site inspection was carried out in response to the complaint concerning horse stables. The owner said that the stabling of horses was not a commercial operation. The report stated:

> "it is considered that the activities can be accommodated on the site without adversely affecting surrounding residences."

It was noted that trees concealed the stables from the street. It was suggested that the owners submit a development application so that some control can be exerted over the use of the site as horse stables.

March

A letter to the owners of Heathcote Hall requesting again the submission of a development application for the keeping of horses. Failure to submit such an application may lead to legal action being instigated by Council.

August

- Report by Town Planner regarding Heathcote Hall:
 - Brief history
 - Present condition
 - Present status and zoning

1981

April

The unauthorised use of Heathcote Hall for horse stables was acknowledged again in this letter to Mrs Farrelly. The submission of a development application was again requested and again legal action was threatened.

May

A letter was again sent to Mrs Farrelly regarding the unauthorised use of the premises as a horse stable. The acknowledgment of no development application was again highlighted to Mrs Farrelly.

October

 A letter of complaint from a resident of Boronia Grove, indicating that the stables had "dramatically multiplied". The complaint is regarding noise and the minimum distance from buildings.

November

Heritage Council of NSW has made an Interim Conservation Order pursuant to s26 of the *Heritage Act* 1977 (NSW).

1982

April

 Heritage Council of NSW made Heathcote Hall subject to a Permanent Conservation Order (PCO) pursuant to s44 of the *Heritage Act* 1977 (NSW).

1983

May

 A letter from the Department of the Valuer General. The value of the land is \$60,000.

1984

February

□ Complaint from resident in Dillwynnia Grove. The complaint was: "stormwater containing manure, urine etc constantly flowing into complainant's yard. Fly and other nuisance. Additional stables being constructed. Council strip overgrown".

□ An additional complaint received outlining the same concerns.

July

 A letter from Council sent to Heathcote Hall outlining the complaints received and informing them that they must obtain building approval from Council for any additional stables.

.

1985

August

□ Restoration of Heathcote Hall suggested for the Bicentennial.

October

 Letter from the Bicentennial Community Committee acknowledging the letter from the HPA.

December

□ Letter to the Heritage Council of NSW from SSC initiating discussions concerning the restoration of Heathcote Hall.

1986

January

Letter from the Heritage Council of NSW acknowledging the request.

February

• A letter from Councillor Andrews from Keith Lund referring to the refurbishment of Heathcote Hall.

May

(

- Site inspection of Heathcote Hall with Heritage Council of NSW, Council and the owners to discuss the restoration of Heathcote Hall.
- Letter indicating that Mr Farrelly was keen to restore the Heathcote Hall
- HPA are keen to have Heathcote Hall restored as part of the bicentennial projects.
- Meeting arranged with the Council and the HPA that a meeting had been arranged to discuss the possibility of restoration.

July

 A letter from SSC to Heritage Council requiring information about finance of restoration work.

August

Letter to Mr Robert Tickner concerning the dilapidated state of Heathcote Hall.

January

1987

- Letter to SSC from Mr Tickner concerning the dilapidated state of Heathcote Hall.
- A Response regarding the discussions with the Heritage Council of NSW regarding the restoration of Heathcote Hall was forwarded to Mr Tickner.

March

- A letter from GHD-VOGAN Pty Ltd detailing options available to Council in regards to the property and a current description of the property. This letter notes the presence of "..in excess of 20-25 horses stabled there at the time of our inspection".
- A photograph showing horses and stables and a Memo from Adam Mills from TPD.
- Letter from Council to the Heritage Council of NSW expressing concern about the deteriorating state of Heathcote Hall.
- Letter to Mr Farrelly regarding the use of the grounds of Heathcote Hall.
- Memo from Adam Mils indicating that Mr Farrelly had taken up the funding for the report from the Heritage Council after they were reminded about their obligations under the *Heritage Act* 1977 (NSW).

September

A Health & Building complaint received regarding new stables being built.
 A site inspection by a council Officer revealed they were only repairing existing stables and fences.

October

- □ Conversation held with Ms Farrelly regarding fence requirements.
- □ A letter from the RSPCA to Mr Farrelly concerning forms for a "livery stable" to be established at "Heathcote Hall".

November

 A letter from the Department of Planning (Mr McManus) outlining the options available in relation to restoration and future uses of Heathcote Hall.

January

1988

Memo regarding Mr Farrelly intentions to legalise the livery stable operation. The memo is questioning whether the se is a legal one.

February

 A letter of complaint from Mr Stratten outlining concerns such as odours, fencing, parking and dogs roaming the streets. A copy of letter sent to Mr Tickner. A letter from the HPA outlining concerns about the loss of vegetation on the boundary of "Heathcote Hall".

March

- A site inspection revealed that the stables were in good condition, although some required some maintenance. A "Notice to Comply" was issued for the stables to be repaired.
- □ A letter form SSC to HPA regarding a fence around the property.
- Memo from Adam Mills outlining there is no existing use rights for the stables.

April

A memo to file indicated that the order had been complied with as the stables had been repaired and the surrounding area had been kept clean.

1989

January

 Report by Adam Mills indicates that horses have been present at Heathcote Hall since the mid 1960's. Mr Mills indicates that they do not enjoy existing use rights.

February

 Councillors request regarding the future uses of Heathcote Hall for the stabling of horses.

March

- Memo from SSC Property Officer detailing conversations with Ms Farrelly about the cultural assessment report by Partridge and Associates.
- SSC instructs *McLennan Steege and Associates* of Caringbah to prepare a valuation of the site.
- Letter of complaint form Mr Brett Stratten regarding the horses and associated stables at Heathcote Hall.

April

- Demo from Property Officer outlining the valuation on Heathcote Hall.
- Letter from Valuers indicating the property supports a value of \$1.4million.

May

The Heritage Council believes that the Farrelly's best option is to sell privately.

June

- Memo to file from Property Officer saying that JWR is wanting to pursue the matter, maybe looking at subdivision.
- Memo from SSC which discussed possible acquisition of the Heathcote Hall so that restoration could occur and/or subdivision.
- □ HPA questions the legality of the horse stables
- A complaint received from Brett Stratten concerned about horses and Council's lack of action.
- Brett Stratten sent the above letter to Mr Tickner.
- Brett Stratten makes a complaint to the Health and Building Department about the noise of horses kicking bins over etc.

July

- Councillors request (No 2806) from Councillor Hill, saying that she had received a letter form Mr Stratten, Several Councillors informed, Tynan & Downy
- Site inspection reveals that the site is very dusty and the manure is spread out all over the place, with the manure bins uncovered. Inadequate drainage was also noted.
- Complaint to the Health & Building Department was received from Mr Brett Stratten concerning manure dumped on the Boronia Grove entrance. The manure bin on the Tecoma St side was also cause for concern for Mr Stratten.

August

- D Memo to Shire Clerk regarding alterations to Heathcote Hall.
- □ Councillor's request (No 3613) from Councillor Parker

September

 A brief history of complaints and concerns regarding Heathcote Hall and the unsightly condition of the stables. A letter sent to Heathcote Hall outlining the unsightly structures and the issuing of a notice under the Public Health Act.

October

- □ Ms Farrelly responds to suggestions that the horse stables are unsightly.
- Site inspection revealed that the maintenance ordered in the Notice had not been carried out.
- Another compliant received regarding the horses and the dilapidated state of Heathcote Hall.
- □ Mrs Farrelly rang SSC to enquire about a fence she wished to construct.

1990

February

Letter from HPA requesting action from Council.

March

 Memo from Health Services outlining the dilapidated state of some of the stables.

April

- Letter sent to Mr Farrelly regarding the dilapidated structures on the property. It stated that SSC wanted the structures demolished or repaired to a specific standard. (ten sheds on total)
- A letter was sent to Mr Farrelly regarding the notice issued under the Public Health Act.
- Councillors Request No 2868 received from Councillor Cheryl Hill enquiring about the current situation with the stables.
- Councillors Request Number 3627 received from Councillor Parker regarding tan update on horse/stabling.
- Memo form Health Services regarding the planning and health issues of Heathcote Hall.
- □ Response from Mrs Farrelly.
- Demo concerning the possible shutdown of the stables.
- □ Memo from Health Services regarding the noise, dust etc form the stables.

July

- Memo to Director of Property from Robert Wilcher (Environment Lawyer) relating to the legality of the horse stables.
- □ Report on horse stables from Robert Wilcher
- Response to Councillors updating them on the issues concerning "Heathcote Hall".

September

Memo from Robert Wilcher – the stables do not enjoy existing use rights.

1998

September

(

 A complaint received from Mr Stratten concerning the horse at "Heathcote Hall".

Appendix F – Photographs

Photograph 1: Heathcote Hall, seen from north-west

Photograph 3: Building materials stockpile near central stables

Photograph 2: Central stables and drums, seen from west

Photograph 4: Fill embankment, south-west corner, seen from Dillwynnia Grove

Photograph 5: Potential asbestos containing material fragments on ground, south-west corner of garden area

Photograph 6: Outhouse in garden area

Photograph 8: Hoarding and materials being stored onsite

GHD

Level 11, Crown Tower 200 Crown Street T: 61 2 4222 2300 F: 61 2 4222 2301 E: wolmail@ghd.com

© GHD 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

2316195-

15872/https://projects.ghd.com/oc/Canberra/enviroandgeotservice/Delivery/Documents/2136195-REP_Heathcote Hall Phase 1.docx

Document Status

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
1	Christopher Cook	Colee Quayle	allef-	Stuart Clark	SSJ	27/10/17

www.ghd.com

Land & Groundwater Consulting Pty Ltd 13/80-84 Illawarra Road Marrickville NSW 2204 T: +61 2 9560 9760 F: +61 2 9572 6440 W: <u>www.lgconsult.com.au</u> ABN 65 162 117 928

29 January 2018

Ref: LG17100.02 GEOTECH RPT 29-01-18.docx

Robert Orth and Nathan Fuz Fuzortinn Pty Ltd Unit 2, Level 2, 8 Lord Street Botany NSW 2019

Via Email: <u>robert.orth@cdconstruction.com.au</u> <u>nathan@cdconstruction.com.au</u>

Dear Robert and Nathan,

Geotechnical Investigation Report 1-21 Dillwynnia Grove, Heathcote, NSW

1. Introduction

Land & Groundwater Consulting Pty Ltd (LG) has been engaged by Fuzortinn Pty Ltd to prepare a geotechnical investigation report for 1-21 Dillwynnia Grove, Heathcote, NSW (the site). The site comprises of a semi-rectangular block legally identified as Lot 1 and 2 in Development Plan (DP) 725184 with an approximate area of 17,500 m². LG understands that the proposed development will comprise the refurbishment and restoration of Heathcote Hall Building, construction of 35 x 2 storey townhouses, 2 x 3 storey apartment buildings with 20 units, a 2-level basement car park and landscaping.

2. Scope and Investigation Findings

The geotechnical fieldworks were conducted on 8 August 2017 by Soilsrock Engineering Pty Ltd. The scope of works and investigation findings are presented in Appendix A. Should you have questions or require further information about this report, please contact the undersigned on (02) 9560 9760 or 0415 726 951.

Yours sincerely,

and

Gonzalo Parra Managing Director Mobile: 0415 726 951 Email: <u>gparra@lgconsult.com.au</u>

Appendix A: Geotechnical Report

LG17100.02

Page 2

DETAILED GEOTECHNICAL SITE INVESTIGATION REPORT FOR

PROPOSED DEVELOPMENT

AT

1-21 DILLWYNNIA GROVE HEATHCOTE NSW 2233

Report Prepared for: FUZORTINN PTY LTD Project No: SRE/275/HC/17 Date: 17/01/2018

Soilsrock Engineering Pty Ltd

5/110 Oaks Avenue, Dee Why NSW 2099 M 0457 1150 44 T 02 8065 2922

101 0437 1130 44 1 02 0003 2722

SSPP (Sydney South) revised and additional Eclarife@scolls2007satt079)&artW_www.soilsrock.com.au

Distribution and Revision Register

Document details

- Project number: P275
- Document number: SRE/275/HC/17
- Document Title: Detailed Geotechnical Site Investigation Report for Proposed
 Development
- Site address: 1-21 Dillwynnia Grove, Heathcote NSW 2233
- Report prepared for: FUZORTINN PTY LTD

Document status and review

Revision	Prepared by	Reviewed by	Approved by	Date issued
0	H.C	J.C	J.C	17/01/2018

Distribution of copies

Revision	Electronic	Paper	Issued to
0	1		FUZORTINN PTY LTD
0	1		GONZALO PARRA (LG CONSULT)

The undersigned, on behalf of SOILSROCK ENGINEERING PTY LTD, confirm that this document and all attached documents, drawings, and geotechnical results have been checked and reviewed for errors, omissions and inaccuracies.

For and on behalf of **Soilsrock Engineering Pty Ltd**

1640

Jorge Cabaco BEng MEng MIEAust CPEng RPEQ NER Principal Geotechnical Engineer

TABLE OF CONTENTS

1.	INT	RODUCTION	.4
2.	Pro	posed Development	. 5
3.	Sco	pe of Works	. 6
4.	RES	SULTS AND ANALYSES OF THE INVESTIGATION	.7
4	.1	Site Location and Description	. 7
4	.2	Regional Geology	. 7
4	.3	Subsurface Investigation	. 8
4	.4	Laboratory Results	. 9
4	.5	Geotechnical Model	11
4	.6	Groundwater	13
5.	CO	MMENTS AND RECOMMENDATIONS	13
5	5.1	Excavation and Groundwater Seepage Conditions	13
5	5.2	Excavation Support & Shoring Retention Systems	14
5	.3	Ground Anchors	16
5	5.4	Foundations – Footings and Piles	17
5	5.5	Engineering Fill	18
5	6.6	Subgrade Preparation for Slab on Ground and Pavements	18
5	5.7	Final Comments	19
6.	LIM	ITATIONS	20

APPENDICES

- APPENDIX A Geotechnical Explanatory Notes
- APPENDIX B Boreholes & Photos Location Plan
- APPENDIX C Cross Section A-A'
- APPENDIX D Boreholes Logs
- APPENDIX E Point Load Test Index Results
- APPENDIX F Laboratory Test Results for Exposure Classification
- APPENDIX G Laboratory Test Results for Atterberg Limit Tests
- **APPENDIX H Site Photographs**

geotechnical | environmental | foundations

1. INTRODUCTION

This document presents the results of a geotechnical investigation carried out by Soilsrock Engineering Pty Ltd (SOILSROCK) for a proposed development of refurbishment and restoration of Heathcote Hall and construction of 36 townhouses and 21 apartments, associated landscape works and 58 lot strata subdivision at 1-21 Dillwynnia Grove, Heathcote NSW.

The investigation was commissioned on 5th December 2017 by Mr. Gonzalo Parra from LG Consults, who is the representative of the owner of the property FUZORTINN PTY LTD. The works was in general accordance with the email of 5th December and scope of works requirements provided by LG Consult on the email of 12th December 2018.

The present report assessment comprised a detailed geotechnical inspection and investigation of the subjected site and is based on the following documents supplied by LG Consult:

- Architectural Drawings carried by INK ARCHITECTS Pty Ltd (Project No: IA1633):
 - DA01 Site Plan, Revision A, dated of 06th December 2017.
 - DA02 Demolition Plan, Revision A, dated of 05th December 2017.
 - DA05 Lower Basement Floor Plan B2, Revision A, dated of 06th December 2017.
 - DA06 Basement Floor Plan B1, Revision A, dated of 06th December 2017.
 - DA07 Ground Floor Plan, Revision A, dated of 06th December 2017.
 - DA08 First Floor Plan, Revision A, dated of 06th December 2017.
 - DA09 Second Floor Plan, Revision A, dated of 06th December 2017.
 - DA10 East, North, West & South Elevations, Revision A, dated of 06th December 2017.
 - DA11 Sections A-A, B-B, C-C & D-D, Revision A, dated of 06th December 2017.
 - DA12 Sections E-E, F-F, G-G, H-H, I-I & J-J, Revision A, dated of 06th December 2017.
- Heathcote Hall Civil Engineering Package (DA) carried by NORTHROP Pty Ltd (Job No: 151903):
 - DA-C01.01 Cover Sheet, Drawing Schedule and Locality Plan, Revision 4, dated of 07th December 2017.
 - DA-C02.01 Concept Sediment and Erosion Control Plan, Revision 4, dated of 07th December 2017.
 - DA-C02.11 Sediment and Erosion Control Details, Revision 4, dated of 077th 7december 2017.
 - DA-C04.01 Stormwater Management Plan, Revision 4, dated of 07th December 2017.
 - DA-C04.61, DA-C04.62, DA-C04.71 Stormwater Management Devices OSD 1 & 2, Revision 4, dated of 07th December 2017.
 - DA-C04.81, DA-C04.82 Stormwater Management Devices OSD 3, Revision 1, dated of 07th December 2017.

- DA-C04.91 Stormwater Catchment Plan, Revision 4, dated of 07th December 2017.
- DA-C05.61 Site-works General Arrangement, Revision 4, dated of 07th December 2017.
- DA-C05.71, DA-C05.72 Site-works Driveway Plan, Revision 4, dated of 07th December 2017.
- Heathcote Hall Topographic Survey carried by CRUX SURVEYING Pty Ltd (Job No: 120131):
 - 120131-SU-DT001 Residential Development "Heathcote Hall" 1-21 Dillwynnia Grove, Heathcote. Lots 1 & 2 in DP275184 Topographic Survey, Revision D, dated of 18th January 2017.
- Heathcote Hall Services Preliminary Geotechnical Assessment carried by GHD, Ref No: 2316195, dated November 2017.
- Heathcote Hall Services Phase 1 Contamination Assessment carried by GHD, Ref No: 2316195, dated October 2017.

The purpose of this investigation was to evaluated the subsurface conditions across the site as a basis for comments and recommendations on the following: geotechnical model and ground conditions; excavation and preliminary groundwater seepage conditions; excavation support and shoring retention systems; design bearing pressures for foundations including footings, piling, slabs; filling and pavement requirements; site classification in accordance with AS2870 (Residential Slabs and Footings), soils exposure classification in accordance with AS2159 (Piling Design and Installation).

2. PROPOSED DEVELOPMENT

The proposed development consists of two precincts which are Heritage Precinct and Development Precinct. The Heritage precinct will involve the restoration of the existing historic Heathcote Hall, renew turf and reinstate pleasure gardens, reinstate pathways, support landscaping regeneration area and introduce a community kitchen garden and orchard. The Development precinct involves the following: construction of 35 two storeys town houses; two walk-up unit blocks including 3 storeys apartment type A (15 units) and 2 storeys apartment type B (6 units); two levels basement car parking accessed from Boronia Grove and Dillwynnia Grove for both residents and visitors of the site; associated earthworks and landscaping.

Details of the proposed development are shown on architectural drawings provided within the DA application as mentioned above.

3. SCOPE OF WORKS

The field work for investigation was carried from the 14th December to 15th December 2017 and consisted of the following:

- Conduct an OH&S and walkover survey to assess local topography, geology, hydrology and existing site conditions;
- Photographic record of the site conditions;
- Drilling of six boreholes (BH7 to BH12) to depths ranging from 6.0 to 12.2m below existing ground level among the site by using a geotechnical hydraulic rig track mounted. All boreholes were initially drilled through soils to the weathered rock by Solid Flight Auger with Standard Penetration Tests (SPT) "N" values at 1.5m intervals to assess strength characteristics of overburden soils on all boreholes. Further rock coring drilling through the weathered rock by NMLC Diamond Coring by 74.8mm (75mm) diameter OD, with core size 51.94mm (52mmm) diameter;
- Two groundwater monitoring well standpipe was installed to 9.6m and 12.2m depth respectively in the BH8 and BH9 for subsequent monitoring of the groundwater before and during construction works.
- Two soil samples were taken from two boreholes up to maximum 2.0m depth within the SPT test sample recovery to carry laboratory testing to determine sulphate, chloride and resistivity for site exposure classification.
- Two soil samples were taken from two boreholes auguring process at 1.5m depths to determine soil plasticity index by laboratory Atterberg Limit Test.
- Recovery of representative soil and rock samples for visual and classification assessment and logging.
- Recovery and collection of rock core samples organised into steel core boxes, for further core logging analyses and selection of ten rock core samples for Point Load Strength Index (Is₍₅₀₎) and photographs reference to classify rock strength and bearing pressures.

The field works were conducted and supervised in the full-time presence of a senior geotechnical professional engineer, and two geotechnical/civil engineers from SOILSROCK office who logged the boreholes, recorded the in-situ test results and collected samples for laboratory testing. The Appendix A "Geotechnical Explanatory Notes" define and explain the logging terms and symbols used.

geotechnical | environmental | foundations

4. RESULTS AND ANALYSES OF THE INVESTIGATION

4.1 Site Location and Description

The site is located in the suburb of Heathcote, within the Sutherland Shire LGA and is legally described as Lot 1 and Lot 2 in DP275184. It is currently within E4 (Environmental Living) land use zoning.

The site is a rectangular shape with a site area approximately of 17,663m², it is located approximately 20km south of the Sydney CBD, 20km north of Wollongong and approximately 500m from Heathcote train station. It is bounded to the North by Boronia Grove followed by low density residential, to the South and the East by Dillwynnia Grove and Tecoma Street respectively followed by low density residential and the Royal National Park. The closest residences to the site are a single level dwelling at No. 24 Boronia Grove and a two storey dwelling house at No. 23A Dillwynnia Grove, which are both located adjacent to the west of the property sharing a common boundary along the site.

At the time of the site inspection, the site was mostly scattered with shrubs and mature plantings, a state heritage significant item Heathcote Hall is located in the south-eastern corner of the site. It is an imposing two storey sandstone villa designed in the Victorian Italianate style and is one of the oldest and grandest buildings in the Sutherland Shire. At present, the building is largely hidden from the surrounding public domain due to the dense vegetation on the site and currently in a very poor state of repair due to years neglecting. There are several abandon outbuildings observed includes WC, sheds and animal houses. Site boundaries are bounded by Paling/steel mesh fences. There are various access points to the site from the three street frontages and the main vehicular entry points to the site are from Boronia Grove.

The site features have an existing gradient that gentle slopes down from East to West within the site with a small hill located at south-western corner of the site where the terrain level drop down significantly with steeper slope near the Western boundary and the South-Western corner of the site. The site field work and location are shown in Appendix B and some photographs of the area are attached to this report in Appendix H.

4.2 Regional Geology

Reference to the Geological Map of Wollongong – Port Hacking 1:100,000 sheet 9029-9129, it is indicated that the site is underlain by shale lenses occurring in the Hawkesbury Sandstone classified as "Rhs - claystone, siltstone and laminate shale lenses" from period of Middle Triassic in Mesozoic Era.

Figure 1 – Portion of the of Wollongong – Port Hacking 1:100,000 sheet 9029-9129. Site area location highlighted in red/black dot.

4.3 Subsurface Investigation

As mentioned above, six boreholes were carried at the site to investigate in deep, soil and rock ground conditions profile, which are summarized in the following table no. 1.

Details of the investigation results and ground conditions encountered along the boreholes are given in the borehole logs in the Appendix D.

Stratum	BH7	BH8	BH9	BH10	BH11	BH12	
Stratum	R.L (Depths) of top of stratum in borehole (m AHD)						
FILL MATERIALS: (SILT/CLAYEY SILT)	211.3 (0.0)	212.0 (0.0)	210.0 (0.0)	211.0 (0.0)	212.5 (0.0)	211.8 (0.0)	
GRAVELLY SILTY CLAY / SILTY CLAY	210.8 (0.5)	211.5 (0.5)	209.5 (0.5)	210.5 (0.5)	212.0 (0.5)	211.3 (0.5)	
CORE LOSS	-	-	199.8 (10.2)	-	-	-	
SHALE – EL	-	204.0 (8.0)	-	-	-	-	
SHALE – VL	204.0 (7.3)	203.3 (8.7)	198.7 (11.3)	-	-	-	
Bore Terminated	202.1 (9.2)	202.4 (9.6)	197.8 (12.2)	205.0 (6.0)	206.5 (6.0)	205.8 (6.0)	
Notes: Rock Strength Description: EL=Extremely Low, VL=Very Low, L=Low, M=Medium, H=High							

 Table No. 1 – Summary of Soil and Rock Profiles in Boreholes

geotechnical | environmental | foundations

4.4 Laboratory Results

Ten rock samples selected from the rock core boxes were tested for Point Load Index Is (50) and Unconfined Compressive Strength "UCS" for selected rock samples were estimated. The "Is (50)" results ranged between 0.015 MPa and 0.098 MPa which indicates rock strength raging from extremely low to low strength rock classification as per summary results on the following table no. 2.

The details of the results are reported on the boreholes at the different depths and on the laboratory reports attached on the Appendix E.

Borehole ID	Sample ID	Depth (m)	ls (50) (MPa)	Estimated UCS Results (MPa)
	SR1	7.75 – 7.78	0.068	1.36
BH7	SR2	8.40 - 8.43	0.065	1.30
	SR2	8.75- 8.80	0.015	0.30
	SR4	9.15 – 9.19	0.058	1.16
	SR5	8.4 - 8.43	0.015	0.29
BH8	SR6	8.70 - 8.74	0.086	1.72
Dirio	SR7	9.10 – 9.13	0.098	1.95
	SR8	9.40 - 9.43	0.095	1.90
BH9	SR9	11.40 – 11.45	0.074	1.49
	SR10	11.80 – 11.85	0.068	1.37

Table No. 2 – Summary of Point Load Index Tests Is (50)/UCS Tests Results

Notes:

- Point Load Testing was completed in the Axial Direction;

- The above strength testes were completed at the "As Received" moisture content;

- The Estimated Unconfined Compressive Strength was calculated from the Is (50) index by assuming a ratio of 20:1 for UCS to Is (50);
- Test Method: RMS T223.

The exposure classification of the residual soil for aggressiveness to buried concrete and steel elements is based on two selected soil samples taken from the SPT tests "Terzaghi" sampler at Boreholes BH7 and BH11. The selected soil samples were tested in NATA accredited and registered laboratory to determine pH, sulphate, chloride and resistivity. The results are

summarized and present in the following table no. 3 and details of laboratory results are attached in Appendix F.

Sample ID	Depth Range (m)	Soil Description	рН	Sulphate (mg/kg)	Chloride (mg/kg)	Resistivity (ohm)
S1	0.5-1.0	Pale grey, brown gravelly silty clay	6.7	330	160	34
S2	1.5-2.0	Reddish brown, pale grey silty clay	4.7	<10	80	200

 Table No. 3 – Laboratory Test Results for Exposure Classification – (pH, Sulphate, Chloride and Resistivity)

Based on the above summary table, the soil is classified as <u>Mild</u> for concrete and <u>Non-aggressive</u> for steel based on soil condition B (silts and clays) in accordance with standard criteria shown respectively in the Table 6.4.2 (C) and 6.5.2 (C) of AS2159-2009 "Pilling-Design and Installation".

Two soil samples collected from BH7 and BH10 were sent to laboratory for Atterberg Limit Testing to determine soil plasticity index. The following table no. 4 summarised laboratory results and details of laboratory report is attached in Appendix F.

Borehole	Sample ID	Depth Range (m)	Soil Description	Plastic Limit (%)	Liquid limit (%)	Plasticity Index (%)
BH7	SP1	1.0-1.5	Pale grey, brown gravelly silty clay	26	78	52
S10	SP2	1.0-1.5	Reddish brown, pale grey silty clay	23	80	57

Table No. 4 – Laboratory Atterberg Limit Test Results for Soil Plasticity

According to the obtained results as present in above table, the soil can be classified as inorganic clays, fat clays with high plasticity (CH). The soils can be identified as high potential expansive soil with high inherent swelling capacity, therefore, the site can be classified based on site reactivity as <u>Class "H1"</u>, This type of high reactive clays can experience high ground movements from moisture changes. The Characteristic Surface Movement " y_s " is expected in the range between <u>40mm to 60mm</u>, according with the general definition of site classes required by AS2870-2011, Table 2.1 and section 2.2.3.

geotechnical | environmental | foundations

4.5 Geotechnical Model

A general geotechnical model of the site has been developed for the subsurface characteristics of the soil and rock based on the boreholes campaign which are summarised in the table no. 5 below, and in the form of interpreted geotechnical cross-section shown in Appendix C. The section shows the depth of overlying soils, together with the interpreted geotechnical boundaries limits for the underlying rock.

Unit	Material Description	Thickness of Unit (m)	Top of Unit RL (m AHD)
Unit 1 Top Soil & Fill Silty Clay	Top Soil & Fill: Approximately range from ground surface to 0.5m, it was well compacted. The materials are dark brown silt with trace of fine grained sand, clay and gravels.	0.0 to 0.5	212.5 to 209.5
Unit 2 Residual Soil (Silty Clay & Gravelly Silty Clay)	Residual Soil: Approximately range from 0.5m to 10.2m. Very stiff to hard pale grey, reddish brown silty clay, gravelly silty clay with fine to medium angular to sub-angular, sub-rounded black, red iron-stained gravels.	0.5 to 10.2	211.5 to 199.8
Unit 3 Bedrock Shale	Shale: Extremely weathered to highly weathered, extremely low to very low strength shale at depth range from 7.3m to 12.2m. Class V and Class IV Shale.	>1.0	204.0 to 197.8

Table No. 5 – Interpreted Geotechnical Model

Notes:

The unit thickness and base of unit values are based on the borehole logs and may not represent extreme (maximum and minimum) values across the site.
 Rock Classification is based on Pells et.al (1998) and Bertuzzi and Pells (2002)

The table no. 6 below assesses the strength of the relevant soils materials crossed by the SPT tests, based in *situ tests* results, soil classification, visual interpretation and extrapolation.

For detailed description of the subsurface conditions, explanation sheets about geotechnical parameters are presented in Appendix A.

Depth Range (m)	Material Conditions	Extrapolated Bearing Pressure (kPa)	Strength (φ°, <i>Cu /</i> kPa)
0.0-0.5	Medium Dense Silt	200	φ° = 30
0.5-1.5	Very Stiff Silty Clay	300	Cu = 150
1.5-10.2	Hard Silty Clay	400	Cu = 200

 Table No. 6 – Recommended Geotechnical Design parameters for soil

Notes:

 The geotechnical parameters interpretation and extrapolation is based and limited to SPT tests carried on site, which are only indicative for design proposes.

The shale encountered in the geotechnical boreholes has been classified in accordance with the procedure given in Pells et. al (1998) and Bertuzzi and Pells (2002).

The interpreted depth and reduced level (RL) at the upper surface of the various bedrock classes are shown in following tables nos. 7 and 8, it should be noted that the profiles are accurate at borehole location only, and some variation must be expected away from the borehole locations. Therefore, the strata units or layers have been shown on the cross-section by inferred strata boundaries only.

Stratum	Depth and Reduced Levels (RL) to Top of Various Rock Classes in Boreholes (m)			
Stratum	BH7	BH8	BH9	
Top of Borehole	211.3	212.0	210.0	
Core Loss	-	-	199.8	
Class V*	-	204.0	198.7	
Class IV*	204.0	203.3	-	
End of Borehole	202.1	202.4	197.8	

Table No. 7 – Summar	v of Geotechnical Model for Rock (Shale)
		onaicj

Notes:

- Rock Classification is based on Pells et.al (1998) and Bertuzzi and Pells (2002)

 *Some medium to high strength bands and extremely low strength carbonaceous are present in Class V and Class IV shale.

	a setter termine to be a first to the set	

Foundation Stratum	Allowable End Bearing Pressure (kPa)	Ultimate End Bearing Pressure (kPa)	Ultimate Shaft Adhesion (kPa)	Typical Elastic Modulus (MPa)
Class V	700	2,000	100	75
Class IV	1,000	3,000	150	150

 Table No. 8 – Recommended Geotechnical Parameters for Rock (Shale)

Notes:

- Rock Classification and bearing pressures based on P.J.N Pells "Substance and Mass Properties for The Design of Engineering Structures in The Hawkesbury Sandstone" AGM Vol No. 39 September 2004
- Ultimate end bearing pressures values occur at large settlements (>5% of minimum footing dimensions)
- Ultimate shaft adhesion values to depend on clean socket of roughness category R2 or better. Values may have to be reduced because of smear.
- Shaft adhesion applicable to the design of CFA or Bored Piles, uncased over the rock socket length, where adequate sidewall cleanliness and roughness are achieved.

4.6 Groundwater

During the drilling groundwater was not observed through the soils materials. At deeper levels during the rock core drilling it was not possible to determine groundwater levels due to the fluid water circulation used to cut the rock as per normal rock core drilling procedure.

As referred above, two monitoring standpipe wells were installed to a maximum of 9.6m and 12.2m deep in the BH8 and BH9 respectively.

The standpipe well would need to be further flushed and cleaned to remove any water resulted from the rock core drilling works, and further groundwater monitoring should be carried out prior start excavation works to confirm or not the presence of groundwater, to be able to design a proper retaining structures for the basements.

5. COMMENTS AND RECOMMENDATIONS

5.1 Excavation and Groundwater Seepage Conditions

The supplied architectural drawings plans indicate two basements levels for parking purposes are proposed for the building development. Bulk excavation levels depth ranges from approximately RL 204.8m to RL 207.8m, which is approximately 4.7m to 6.5m maximum range excavation depths below existing surface ground level.

Based on the in situ testing the overall excavation it is expected to intersect the very stiff to hard silty clay profiles for the proposed basement.

It is not expected the excavation depths to intersect rock materials, if encountered the shale should be extremely low to very low rock strength shale rock at the first meter's depth. Excavation within the filling, soils and Class V/IV rock should be readily achievable using hydraulic excavators with bucket attachments, hydraulic hammers will not be necessary to use.

In addition, a Waste Classification should be carried for all the excavated materials to be disposed in accordance with NSW Environment Protection Authority (EPA) Waste Classification Guidelines Nov 2014, and under the Protection of the Environment Operations Act 1997 (POEO Act). Environmental sampling and chemical laboratory testing will need to be carried out to classify the spoil resulted from the excavation prior to disposal. This includes filling and excavated natural materials (GSW/VENM/ENM), if it is intent to be removed from the site. The type and extent of testing undertaken will depend on the final use or destination of the spoil, and requirements of the site. SOILSROCK ENGINEERING can carry those works if required.

5.2 Excavation Support & Shoring Retention Systems

For the construction of the underground car parking, vertical excavations would need to be undertaken within the filling and silty clay which are unlikely to be self-supporting for any significant period. Unsupported excavation temporary batters it is not recommended, due to the time required to construct the basement and relatively deep excavations, therefore, temporary and permanent shoring support is required along all sides of the excavation.

Shoring Retentions Systems Options

Further to the above prior to excavation commencing, a retaining wall must be installed to maintain the stability of the fill and the silty clays for the basements.

A soldier bored piling wall method, using diameter piles such as 450mm or 600mm spaced at 1.5-2.5m, combined with reinforced shotcrete infill panels and temporary anchors would be suitable to supporting the excavation faces. The soldier piles must be installed prior excavation works, following reinforced shotcrete infill panels construction at about maximum 2.5m drops as the excavation proceeds. Temporary ground anchors or steel props can be considered to provide lateral restraint for the walls until the basement carpark floor slabs have been constructed to prop the walls in the longer term.

In addition, a temporary/permanent dewatering system by conventional water wells or sump pumps could be necessary to install to control water inflows if groundwater is confirmed. It should be possible to discharge water into the storm-water or sewer systems, providing appropriate water quality analysis are undertaken to determine the suitability of water discharge, an appropriate council license should be approved and obtained prior discharge. Further groundwater management plan could be required depending on the groundwater behaviour confirmation.

If an unexpected groundwater high flows are confirmed, and a permanent dewatering system is required but not approved, the basement would need to be tanked (fully watertight) and designed to take hydrostatic lateral and uplift pressures into account. Secant piling wall retaining solutions by 450mm or 600mm piles and ground anchors are recommend if ground water high flows are confirmed.

Earth Pressures

For the design of shoring system, limit the deformation and deflection occurring outside the excavation are the major consideration in selecting earth pressures.

Earth pressures will be affecting the excavation faces retained regarding they are temporarily or permanently retained, from the ground surface along the fill and clay down to the weathered rock materials. Table no. 9 below provides preliminary coefficient of lateral earth pressures for retaining design support which are based on horizontal ground surface for the soils and rock horizons encountered during the geotechnical investigation.

Material	Bulk Unit Weight (kN/m³)	Coefficient of Active Earth Pressure (K₃)	Coefficient of Earth Pressure at Rest (K ₀)	
Fill	18	0.42	0.59	
Residual Soil - Clay	19	0.39	0.56	
Class V Rock - Shale	20	0.26	0.41	
Class IV - Shale	21	0.24*	0.38*	
Notes: * applicable only for favourably rock joints;				

Table No. 9 - Preliminary Coefficients of Lateral Earth Pressure for Excavation Support

Any surcharges load including construction, traffic nearby footings, inclined backfill surface affecting the walls should be considering in the design. Drainage of the ground behind impermeable walls should be provided otherwise the wall should be designed for full hydrostatic pressures.

For passive restraint, rock sockets below the bulk excavation level, should have a minimum length of three pile diameters below the lowest level of any nearby excavation and socket into competent rock strength. To reduce the risk of hydrostatic pressures acting on the walls, adequate drainage should also be provided behind the full height of the basement walls.

5.3 Ground Anchors

Temporary ground anchors may need to be used for the temporary lateral restraint of the perimeter piled wall systems during excavation works. It is recommended ground anchors to be designed inclined below the horizontal from 25° to 35° to allow anchorage into the stronger bedrock materials at depth, have a free length equal to their height above the base of the excavation and minimum 3.0m bond length.

Temporary anchors should be proof loaded to 125% of the design working load after installation and locked-off to no more than 80% of the working load. To ensure that lock-off load is maintained and not lost due to creep effects or other causes, periodic checks should be carried out during the construction phase.

The following table no. 10 presents the allowable average bond stresses at the grout-rock interface for design of temporary ground anchors to install for the support of piled wall systems.

Material Description	Allowable Average Bond Stress (kPa)	
Class V Rock - Shale	100	
Class IV Rock – Shale	150	

Table No. 10 - Geotechnical Anchor Design Bond Stresses

To apply the parameters above it is assumed that the anchor drilling holes are properly clean and flushed and grouting operations to be undertaken with good anchoring practice using minimum water/cement ratio w/c=0.4 mixed properly in a colloidal high-speed grout mixer.

Centralizers must be installed in the anchors bodies prior installation in the hole to ensure anchors are centralized and has minimum grout cover. It is recommended to carry preliminary anchor testing prior start the anchoring construction works to confirm bond stresses and bond length requirements.

Preliminary anchors testing supervised by a qualified geotechnical engineer could allow increased bond stresses to be adopted during construction.

geotechnical | environmental | foundations

5.4 Foundations – Footings and Piles

The foundations conditions at the exposed base of the excavation for the basement it is expected to intersect hard residual soil silty clays to very low strength rock shale from bulk excavation level RL 207.8m to RL 198.7m. The foundations conditions for the residential buildings outside of the excavation it is expected to intersect dense fill material, stiff to hard silty clay and very to low shale rock strength.

For all foundations conditions referred above it is recommended to carry piled footings systems, with piles socket in the bedrock Shale rock strength CL. III with 3,500 kPa allowable bearing pressure preferably if can be reached in deep, or Shale rock strength CL. IV with minimum 1,000 kPa allowable bearing pressure assuming longer sockets, subject to rock strength and bearing pressures capacity in situ confirmation/inspection by a professional qualified geotechnical engineer and providing suitability of design loads. The geotechnical design bearing pressures recommended for foundations design are referred on the table no. 8 above. However, founding depths always must be adjusted and confirmed by the structural loads and foundations type required for the project.

Once the structural loads and footings and/or piers sizes have been determined, settlements analyses should be carried out to confirm the suitability of the foundations solution adopted.

Bored piles are recommended providing very low water seepage inflows to the holes, permitting to be dewatered by a normal water pump and cleaned prior concrete pour. If high water seepage inflows are expected CFA Contiguous Flight Auger piling system is recommended and indicated when water is present in the ground.

All footings/piles excavations should have their base levelled, clean, dewatered and free of any loose material prior to pouring, also ground pressures should be checked and confirmed on site by a qualified experienced geotechnical engineer. The concrete pouring should occur with the minimum delay to avoid deterioration, if delays are anticipated, it is recommended that the base of the footings be protected with a blinding layer of concrete with minimum strength of 25Mpa.

All footings/piers should be inspected by a geotechnical engineer to confirm the design allowable bearing pressures has been reached.

geotechnical | environmental | foundations

5.5 Engineering Fill

If backfill is to support landscaped areas and backfill retaining walls, an engineered fill should be carried comprising 'clean' sandy soils, free of organic matter and contain a maximum particle size of 37.5mm.

The engineered fill should be placed in a controlled and engineered manner compacted using a vibrating plate compactor and/or trench roller in layers not more than 150mm for non-sand materials not containing gravel-sized, or not more than 300mm for sand materials for controlled fill following AS2870-2011 "Residential Slab and Footings". Compaction should achieve minimum density index (ID) of 70%, to be proof tested by "DCP" tests Dynamic Cone Penetrometer with a blow count of 7 or more per 300mm layers as described in AS1289.6.3.3.

5.6 Subgrade Preparation for Slab on Ground and Pavements

Slab on Ground

Depending on the loads required, slab-on-grade construction is feasible for the ground level floor slab, according with the silty clay or extremely low to very low strength shale materials expected to be encounter after excavation, subgrade preparation would be required. A well compacted granular course material (with maximum particle size of 37.5mm) subgrade with maximum 150mm thick layers of crushed recycled concrete or crushed sandstone (DGB20 or similar) layers it is recommended to install and be properly compacted. The subgrade layers should be compacted using a vibratory roller (minimum 6-8 tonnes deadweight) to target density ratio of 98% of SMDD. Moistening of each layer (if the material is not moist) will facilitate compaction. Density/compaction tests should be carried out on each layer to confirm the above specification has been achieved in accordance with AS3798 Guidelines on Earthworks for Commercial and Residential Developments.

A qualified geotechnical engineering should supervise on site the subgrade preparation at minimum Level 2 Inspection and Testing as defined in AS3798, Soilsrock Engineering can supervise, testing and certify the works if required.

Pavements

For pavement design, minimum CBR values of the subgrade material must be determined by the design engineer depending on the pavement design type considered.

For pavements design where the subgrade is clay material the depth of 500mm should be considered for static/medium loads and rigid pavement types. For static/light loads and rigid/flexible pavement types 300mm subgrade depth should be considered.

Depending on the pavement type design, the subgrade depth shall be compacted to achieve minimum relative compaction of minimum dry density ratio of 100% obtained from Standard Compactive Effort "SMDD – Standard Maximum Dry Density", following the same compaction methodology described for slab on ground subgrade preparation. For all pavements, it is essential that the specification for compaction of subgrade materials reflects the condition under which tests carried out for pavement thickness design are conducted.

Above the well compacted subgrade materials a subbase granular course material layer with minimum 150mm thick by crushed concrete or crushed sandstone (DGB20 or similar) should be installed. Subbase layers should be also compacted using the same compaction methods described above.

All pavements subgrade and subbase preparation geotechnical inspection and testing minimum level 2 should be allowed and follow the AS3798 Guidelines on Earthworks for Commercial and Residential Developments.

5.7 Final Comments

Following the above, further geotechnical input is required and summarized as follow:

- Groundwater further monitoring to confirm groundwater behavior for excavation conditions and support.
- Carry proper design for temporary or permanent piling shoring wall support after groundwater behavior confirmation.
- Geotechnical depths inspections to confirm piling socket for retaining walls stability.
- Geotechnical site inspections to footings and foundations piles to determine and confirm ground bearing pressures.
- Geotechnical site inspections for anchoring installation and testing;
- Density testing of all engineered fill if required;
- Geotechnical site inspections and compaction tests to confirm density targets for subgrade preparation and subbase installation below slab-on-grade and pavements.

Further to the results of the investigations, and geotechnical recommendations above, providing the works are carried accordingly with this report, an experienced qualified professional geotechnical engineer inspect the site to approve the founding levels and carry proper in situ tests, and good engineering and building construction practice is maintained the proposed development is suitable for the site.

Regarding the soils and rock depths with the geotechnical bearing capacities recommended above could vary across the site, the founding depth for foundations and geotechnical conditions for excavation support to be constructed could also vary. Therefore, it is recommended, an experienced professional and qualified geotechnical engineer inspect the site from the start of the excavation works and foundations installation, to approve the founding levels.

6. LIMITATIONS

The site geotechnical investigation undertaken for the present report is an estimate and interpretation of the characteristics of the soil and rock of the subsurface conditions encountered during the test locations investigated. Geological and geotechnical conditions can be unpredictable or can reveal unforeseen conditions, in other test locations investigated no matter how comprehensive the investigation is.

This present report analyses forms an engineering model interpretation and opinion of the actual subsurface conditions of the points where the tests were carried. The selected in-situ tests results are indicative of the actual conditions encountered. Recommendations are given based on the data testing results and visual interpretation carried by professional geotechnical and geological engineers from this office. Interpretation of the present report by others may differ from the interpretation given, there is the risk the report may be misinterpreted and Soilsrock cannot be held responsible for that reason.

Geotechnical reports rely on factual interpreted and judgement of information based on professional visual interpretation of soils and rock samples, in situ tests and sampling tests, which has some uncertainty due to changing unexpected ground conditions and it is far less exact than other design disciplines. Soilsrock Engineering accepts no responsibility if different unexpected ground conditions occur in locations where the investigations were not carried out.

This Document is COPYRIGHT © 2018 by Soilsrock Engineering Pty Ltd – All Rights Reserved. No part of this document may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of Soilsrock Engineering Pty Ltd. All other property in this submission shall not pass until all fees for preparation have been settled.

This document is for use only of the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this document. If this report is altered in any way, or not reproduced in full, no responsibility will be taken for this. This is report is only valid upon all costs related with the field works and reporting has been settled and released by the client.

APPENDIX A

Geotechnical Explanatory Notes

APPENDIX A – GEOTECHNICAL EXPLANATORY NOTES

The following geotechnical notes are provided, to give a better understanding of the description and classification methods and field procedures used for the interpretation and compilation of this report which is entirely based on the AS 1726-1993 – Geotechnical Investigations.

INVESTIGATIONS METHODS

Test Pits

Test pits are usually excavated with a backhoe or an excavator, allowing close examination of the in-situ soil if it is safe to enter into the pit. The depth of excavation is limited to about 3m for a backhoe and up to 6m for a large excavator. A potential disadvantage of this investigation method is the larger area of disturbance to the site. Samples can be taken from the test pits for soils testing and analyses.

Large Diameter Augers

Boreholes can be drilled using a rotating plate or short spiral auger, generally 3000mm or large in diameter commonly mounted on a standard piling rig. The cuttings are returned to the surface at intervals (generally not more than 0.5m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube samples.

Continuous Spiral Flight Augers

The borehole is advanced using 90-125mm diameter continuous spiral flight augers which are withdrawn at intervals to allow sampling or in-situ testing. This is a relatively economical means of drilling in clays and sands above the water table. Samples are returned to the surface, or may be mixed with soils from the sides of the hole. Information from the drilling (as a distinct from specific sampling by SPTs or undisturbed samples) is of relatively low reliability, due to the remoulding, possible mixing or softening of samples by groundwater.

Dynamic Cone Penetromer Tests

Dynamic penetrometer tests (DCP) are carried out by driving a steel rod into the ground using a standard weight of hammer falling a specified distance. As the rood penetrates the soil the number of blows required to penetrate each successive 300mm depth are recorded. Normally there is a depth limitation of 1.2m, but this may be extended in certain conditions by the use of extension rods. A 16mm diameter rod with a 20mm diameter cone end is driven using a 9kg hammer dropping 510mm (AS 1289, Test 6.3.2). This test was developed initially for pavement subgrade investigations, and correlations of the test results with California Bearing Ratio have been published by various road authorities. Also Correlations with SPT tests can be made for Cohesion less and cohesive soils.

Standard Penetration Tests

Standard penetration tests (SPT) are used as a means of estimating the density or strength of soils and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, Methods of Testing Soils for Engineering Proposes – Test 6.3.1.

The test is carried out in a borehole by driving a 50mm diameter split sample tube under the impact of a 63kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments equal to 450mm in total. The first 150mm increment it not considered for the so-called "N" value (standard penetration resistance), which is taken from the number of blows of the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm may not be practicable and the test will be discontinued. The results are represented in the following example:

- In the case where full penetration is obtained with successive blow counts for each 150mm as follow:
 - 1st Increment (150mm) = 2 blows
 - o 2nd Increment (150mm) = 8 blows
 - 3rd Increment (150mm) = 15 blows
 - Representation 2,8,15 "N" Value = 23
- In the case where the test is discontinued before the full penetration:
 - 1st Increment (150mm) = 20 blows
 - 2nd Increment (100mm) = 40 blows test interrupted
 - 3rd Increment (150mm) = not carried test refusal
 - Representation 20, 40/100 mm "N" Value = 40

The results of the SPT tests can be related empirically to the engineering properties of the soils.

geotechnical | environmental | foundations

Correlation between DCP vs SPT for Cohesionless Soils

DCP (Blows/300mm)	SPT Value (Blows/300mm)	RELATIVE DENSITY
0-3	0-4	Very Loose
3-9	4-10	Loose
9-24	10-30	Medium Dense
24-45	30-50	Dense
>45	>50	Very Dense

Correlation Between DCP vs SPT for Cohesive Soils

DCP (Blows/300mm)	SPT Value (Blows/300mm)	CONSISTENCY
0-3	0-2	Very Soft
3-6	2-5	Soft
6-9	5-10	Medium/Firm
9-21	10-20	Stiff
21-36	20-40	Very Stiff
>36	>40	Hard

Continuous Diamond Core Drilling

A continuous core sample can be obtained using a diamond tipped core barrel, usually with a 50mm internal diameter. Provided full core recovery is achieved (which is not always possible in weak rocks and granular soils), this technique provides a very reliable method of investigation.

Sampling

Sampling is carried out during drilling or test pitting to allow engineering examination (and laboratory testing where required) of the soil rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thin-walled sample tube into the soil and withdrawing it to obtain a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally affective only in cohesive soils.

DESCRIPTION AND CLASSIFICATIONS METHODS FOR SOILS AND ROCK

Descriptions include strength or density, colour, structure, soil or rock type and inclusions.

SOIL DESCRIPTIONS

Soil types are described according to the predominant particle size, qualified by the grading of other particles present:

Туре	Particle size (mm)	
Boulder	>200	
Cobble	63 – 200	
Gravel	0.6 - 63	
Sand	0.075 – 0.6	
Silt	0.002 – 0.075	
Clay	<0.002	

Туре	Sand & Gravel Particle size
Coarse gravel	36mm – 19mm
Medium gravel	19mm – 6.7mm
Fine gravel	6.7mm – 2.36mm
Coarse sand	2.36mm – 600µm
Medium sand	600µm – 212µm
Fine sand	212µm – 75µm

geotechnical | environmental | foundations

The proportions of secondary constituents of soils are described as:

Coarse grained soils		Fine grained soils		
%Fines	Modifier	%Coarse	Modifier	
<u><</u> 5	Omit, or use 'trace'	<u><</u> 15	Omit, or use 'trace'	
>5 - <u><</u> 12	Describe as 'with clay/silt' as applicable	>15 - <u><</u> 30	Describe as 'with clay/silt' as applicable	
>12	Describe as 'with silty/clayey' as applicable	>30	Describe as 'with silty/clayey' as applicable	

Definitions of grading terms used are:

- Well graded a good representation of all particle sizes;
- Poorly graded an excess or deficiency of particular sizes within specified range;
- Uniformly graded an excess of a particular particle size;
- Gap graded a deficiency of a particular particle size with the range.

Cohesive Soils

Cohesive soils, such as clays, are classified on the basics of undrained shear strength. The strength may be measured by laboratory testing, or estimated by field tests or engineering examination. The strength terms are defining as follows:

Description	Abbreviation	Undrained shears strength (kPa)
Very soft	VS	<u><</u> 12
Soft	S	>12 – <u><</u> 25
Firm	f	>25 – <u><</u> 50
Stiff	st	>50 – <u><</u> 100
Very stiff	vst	>100 – <u><</u> 200
Hard	h	>200

Cohesionless Soils

Cohesionless soils, such as clean sands, are classified on the basics of relative density, generally from the results of standard penetration tests (SPT), cone penetration tests (CPT), or dynamic penetrometers (PSP). The relative density terms are given below:

Relative density	Abbreviation	Density index %
Very loose	vl	<u><</u> 15
Loose	I	>15 – <u><</u> 35
Medium dense	md	>35 – <u><</u> 65
Dense	d	>65 – <u><</u> 85
Very dense	vd	>85

Soil Origin

It is often difficult to accurately determine the origin of a soil. Soils can generally be classified as:

- Residual soil derived from in-situ weathering of the underlying rock;
- Transported soils formed somewhere else and transported by nature to the site;
- Filling moved by man.

Transported soils may be further subdivided into:

- Alluvium river deposits;
- Lacustrine lake deposits;
- Aeolian wind deposits;
- Littoral beach deposits;
- Estuarine tidal river deposits;
- Talus coarse colluvium;
- Slop wash or Colluvium transported downslope by gravity assisted by water. Often includes angular rock fragments and boulders.

ROCK DESCRIPTIONS

Rock Strength

Rock strength is defined by the Point Load Strength (Is50) and refers to the strength of the rock substance and not the strength of the overall rock mass, which may be considerably weaker due to defects. The test procedure is described by Australian Standards 1726. The terms used to describe rocks strength are as follow:

Term	Abbreviation	Point Load Index Is ₍₅₀₎ MPa	Approx. Unconfined Compressive Strength MPa*					
Extremely low	EL	<u><</u> 0.03	<0.6					
Very low	VL	>0.03 – <u><</u> 0.1	0.6 – 2					
Low	L	>0.1 – <u><</u> 0.3	2-6					
Medium	М	>0.3 – <u><</u> 1.0	6 – 20					
High	Н	>1 – <u><</u> 3	20 – 60					
Very high VH		>3 – <u><</u> 10	60 – 200					
Extremely high	EH	>10	>200					

*Assumes a ratio of 20:1 for UCS to IS₍₅₀₎

Degree of Weathering

The degree of weathering of rocks is classified as follows:

Term	Abbreviation	Description					
Residual	PS	Soil developed on extremely weathered rock; the mass structure and					
Residual	110	substance are no longer evident.					
Extremely		Rock is weathered to such an extent that it has 'soil' properties, i.e. it					
	XW	either disintegrates or can be remoulded in water, but the texture of					
weathered		the original rock is still evident.					
Distinctly weathered	DW	Staining and discolouration of rock substance has taken place.					
Slightly weathered	S\M/	Rock substance is slightly discoloured but shows little or no change of					
Signily weathered	300	strength from fresh rock.					
Fresh	FR	No signs of decomposition or staining.					

Degree of Fracturing

The following classification applies to the spacing of natural fractures in diamond drill cores. It includes bedding plane partings, joints and other defects, but excludes drilling breaks.

Term	Description
Fragmented	Fragments of <20mm
Highly fragmented	Core lengths of 20 – 40mm with some fragments
Fractured	Core lengths of 40 – 200mm with some shorter and longer sections
Slightly Fractured	Core lengths of 200 – 400mm with some shorter and longer sections
Unbroken	Core lengths mostly >1000mm

Rock Quality Designation

The quality of the cored rock can be measured using the Rock Quality Designation (RQD) index, defined as:

$$RQD \ \% = \frac{cumulative \ length \ of \ 'sound' coresections \ \ge \ 100 mm \ long}{total \ drilled \ length \ of \ section \ being \ assessed}$$

Where 'sound' rock is assessed to be rock of low strength or better. The RQD applies only to natural fractures. If the core is broken by drilling or handling (i.e. drilling breaks) then the broken pieces are fitted back together and are not included in the calculation or RQD.

Rock Quality Designation

For sedimentary rocks the following terms may be used to describe the spacing of bedding partings:

Term	Separation of Stratification Planes
Thinly laminated	< 6mm
Laminated	6mm to 20mm
Very thinly bedded	20mm to 60mm
Thinly bedded	60mm to 0.2m
Medium Bedded	0.2m to 0.6m
Thickly bedded	0.6m to 2m
Very thickly bedded	> 2m

LOG SYMBOLS

Moisture Condition - Cohesive Soils:

MC > PL – Moisture content estimated to be greater than plastic limit
MC = PL - Moisture content estimated to be approximately equal to plastic limit
MC < PL - Moisture content estimated to be less than plastic limit

Moisture Condition - Cohesionless Soils:

D – Dry – Runs freely through fingers

M - Moist - Does not run freely but no free water visible on soil surface

W – Wet – Free water visible on soil surface

Strength (Consistency) - Cohesive Soils:

VS - Very Soft - Unconfined compressive strength less than 25 kPa

S – Soft – Unconfined compressive strength 25-50 kPa

F – Firm – Unconfined compressive strength 50-100 kPa

St – Stiff – Unconfined compressive strength 100-200 kPa

VSt – Very Stiff – Unconfined compressive strength 200-400 kPa

H – Hard - Unconfined compressive strength greater than 400 kPa

Density Index/Relative Density - Cohesionless Soils

Symbol	Density Index (ID)	Range %	SPT "N" Value Range (Blows/300mm)
VL	Very Loose	<15	0-4
L	Loose	15-35	4-10
MD	Medium Dense	35-65	10-30
D	Dense	65-85	30-50
VD	Very Dense	>85	>50

APPENDIX B

Boreholes & Photos Location Plan

Soilsrock Engineering Pty. Ltd 5/110 Oaks Avenue, Dee Why, NSW 2099 M: 0457 115 044 | T: +61 2 8960 5291 Email: info@soilsrock.com.au www.soilsrock.com.au

CLIENT:

FUZORTINN PTY LTD

TITLE: BOREHOLE & PHOTOS LOCATIONS PLAN

1-21 DILLWYNNIA HEATHCOTE, NSW 2233

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8

LEGEND

BOREHOLE

PHOTO NUMBER WITH DIRECTION OF VIEW

A CROSS SECTION

Date	DATE:17/01/2018	CHECKED BY: JC
	SCALE: NTS	DESIGNED BY: MJ
	PROJECT No: SRE/275/HC/17	Drawing No: G01 Page 184 of 267

APPENDIX C

Cross Section A-A'

ij/jock gineering consultants	Soilsrock Engineering Pty. Ltd	CLIENT:	TITLE: CROSS SECTION A-A'	Revision	
	M: 0457 115 044 T: +61 2 8960 5291 Email: info@soilsrock.com.au	FUZORTINN PTY LTD	1-21 DILLWYNNIA HEATHCOTE, NSW 2233		
	www.soilsrock.com.au				
uth) revised and additional	documentation - (2017SSH019) Part 8				

SSPP (Sydney Sou

APPENDIX D

Borehole Logs

								BOREHOLE	LOG)					
70	lvrock	Client: Project: Location Date:	FUZ HEA n: 1 - 2 5/01	ORTINN ATHCOTE 21 DILLW I/2018	PTY LTD E HALL - D YNIA GRO	DETAI DVE, I	LED GEOTEC HEATHCOTE I	HNICAL SITE INVESTIGA NSW	TION			BOREH Page: Date St Date C	IOLE NO. tarted: ompleted	BH0 1 of 15/12/2 15/12/2	7 3 2017 2017
Equipr Driller:	nent:	Project No.: SRE/275/HC/17 L ht: DANDO TERRIER Hole Diameter: 90mm Coring Size: - BG DRILLING Drilling Method: SOLID FLIGHT AUGER / WASH BORE Inclination: 9				Logged - 90°	d/Checked b RL S East Nort	y: H.C/. Surface Approx.: ting: thing:	J.C 211.3 - -						
er	ро	PT				g				Soils	Classif	ication			
Groundwate Decord	Drilling Meth	Field Tests S	Sample ID	RL -	Depth (m)	Graphic Lo		Material Description		Moisture Condition	Strength (Consistency)	Density Index	Rem	arks and Additio Observations	onal
				210.8_	 		SILT: Da sa ro	ark brown silt with trace of fin and, clay and some sub-angul unded gravels.	e graineo ar to sub	d D	-	-	Fill Material		
DRY ON	, mmð			- - - 210.3_	 1.0		GRAVELL Pa Y SILTY re CLAY: br ro pl:	ale grey, brown silty cl d/orange motted and sor own, black sub-angular unded gravels. Medium asticity.	ay with ne dark to sub- to high	ר < ר					
	FROM 0.0m to 3			 	 1.5	0									
	LIGHT AUGER	SPT (11,23, Np = 5	35) 58	- - 209.3_	 _ 2.0					D	н	-			
	90mm SOLID F			- - 208.8_ -	 - 2.5 										
		SPT (23,28, Np = ⁻	- 43) 71	208.3	3.0 		GRAVELL Pa Y SILTY m CLAY: da	ale grey to white clay with otted and sub-angular to sub ark brown, black gravels.	orange	e 1					
	RE FROM 3.5m to 4.5m			207.8_ - - 207.3_	3.5 4.0					м	н	-			
	WASH BC	SPT		- - 206.8_	 4.5								(STAI REFER TO	RT CORING AT 4. D CORE BOREHO	.5m) DLE LOG
		(11,25, Np = 4	24) 19	206.3_	 5.0					М	н	-			
Symb Equipm	ols & Abbrev vemt/Method	viations:	Moisture Co	ndition 4	R = Strength	Refuse	N = S Density Index	PT Value Weathering	St	rength		Grafic L	.og Symbols		
HA	Hand Auger	Emer	PL=Plastic li	mit (Conesive Soil	5	Conesionless Soil	s Rock Classification	EL	= Extremly	LOW		Concrete	Silly S	and
1156	Diamond Core-4	iomm 29mm	MC>PL		vS = Very So	π	VL = Very Loose	RS = Residual Soil	VL	= Very Lov	v		Fill	Clay S	and
HQ	Diamond Core-6	odmm Comm	MC=PL		s = Soft		L = Loose	XW = Extremely Weather	ed L=	Low	News-W	110000	Clay	Silty C	lay
NMLC	Diamond Core-5	d7mm	D=Dev		ct = c+#		MD = Medium Der	SW = Clickter Weathered		= meaium S	sirength		Sill	Grave	ly Gilly Class
PCD	Polycrystellation		M=Moiet	3	VSI = Venu St	iff	VD = Very Dence	F = Fresh	HIG	yn - H (= Veny Wie	th	purplicite	Graval	Sondo	tone
AV	Auger with V-bit	bit	W=Wet		H = Hard			() ()	EH	i = Extremly	/ High		Sandy Clay	Shale	
						s	OILSROCK ENGI	NEERING PTY LTD ABN 83 1	55 012 61	14					

GEOTECHNICAL | ENVIRONMENTAL | FOUNDATIONS SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8 www.solistock.com.au | hht@soilsrock.com.au

					BOREHOLE LOG																			
Client: FUZORTINN Project: HEATHCOTE					RTINN	FINN PTY LTD							BOREHOLE NO: BH07											
						TE HALL - DETAILED GEOTECHNICAL SITE INVESTIGATION					V Page:										2 of	3		
					018	VYNIA GROVE, HEATHCOTE NSW					Date Started: 15/12/201 Date Completed: 15/12/201										2017			
Project No: SRE/275/HC						2/17					Logge	ed/ Ch	necke	 ed by	<i>r</i> :				<u>H</u> .C/J.C					
Equipment	DANI	DO TE	RRIER		Hole D	iameter:	76mm		Coring	g Siz	ə:			52n	nm				I	R.L S	urface	Approx.	211.3	
Driller:	BG D	RILLI	NG		Drilling	g Methoc	NMLC		Inclin	atior	1:			ę	90°				Easting: Northing:			-		
													Ro	ock C	lassifi	catio	n							
/ater d	Ψ	₽		Ê	Log				Weath	ering	Esti	mate	d		cs	RQ	D%	I	Defe	ct Spa	acing	Rer	narks and	
ndw	rrel I	mple	RL	pth (phic		Material Description	ı			Str	ength	1	Mpa	ed U aa)					(mm)		A	ditional	
Grou	Ba	Sa		De	Gra				ທ ≥ ≥	≥⊯	ᆔᆔᆈ	5 т 2		9 ⁽²⁰⁾	imat (Mp	22 52 74 62 52	6	50 G	00 0 00 0 0			Obs	servations	
									≝×≏	ωщ	ш > -	>	> ш	<u></u>	Est	526	35,	κ 9	0-: 20- 60-: 200- > 6					
													Т						Π	Π				
			206.8	4.5		(S	START CORING AT 4.5	m) with medium to					+				$\left \right $		++	H		Residual	Soil developed	
			-	_		high s	trength ironstone indu	lated bands			$\langle \rangle$							\mathbb{N}				from extre shale with	mely weathered the rock mass	
	1st		-	-		throug	hout.						$\langle \rangle$					/ \				structure fabric are	and substance no longer	
				5.0_															\backslash			evidence		
			-	-		D 1					\setminus		/)											
			-	-		Band					\backslash								\setminus					
			-	-												\backslash					/			
			205.8	5.5							\setminus			V		\backslash				$\langle \rangle$	/			
			-	_		Band					$\langle \rangle$			V						$\langle \rangle$				
	P		-	-								V		V		V				\mathbb{N}				
	й		205.3	6.0								ΛL		A		Å				\mathbf{A}				
			-	-										Λ										
			-	_		Band						Ν							j	$\langle \rangle$				
			-	- -		bunu						\setminus					$\left(\right)$							
			204.0	0.5										$ \rangle$			$\left \right\rangle$				$\left \right $			
			-	-		Band					/			$ \rangle$			$\left \right\rangle$							
			-	-		Band							VI						/					
			204.3	7.0		Band											$ \rangle$				$ \rangle$			
			-	-									$\langle \rangle$					\mathbb{N}						
			-	_							/							¥.	44	₩				
	3rd		- 203.8	7.5		weath	ered shale with siltst	one laminations																
			-	_		and c low sti	arbonaceous. Extrem ength.	ely low to very	ſ															
			-	-			0				•			0.068	1.36									
			-	_																	1::			
			203.3	8.0																				
			-	_																				
			-	-																				
			202.8	8.5							•			0.065	1.3									
	ដ		-	-																		1		
	4		-	-							•			0.015	0.3					¦ ₩	┩║║	1		
			-	-		SHALE: Dark g lamina	rey highly weathered sł tions. Extremely low to v	nale with siltstone very low strength.																
				- 3.0 										_										
						(COF	RING TERMINATED AT	9.2m)					++	0.058	1.16	++	┢╋	┼┼	₩	┊╀∔	+++			
						, ,		,																
																						1		
Symb	ols & Abbre	viatio	ons:			R = Refu	sal N = SPT Va	lue						1			<u></u>		<u>مسالسانی</u>	غب	<u> i</u>			
Equipm	emt/Method		Mol	sture Co	ndition	Strength	Density Index	Weathering		1	strength			Gr	afic Lo	Symb	ols	589550	1111111110	1000002				
HA	Hand Auger		PL=	Plastic li	nit	Cohesive Soils	Cohesionless Soils	Rock Classification	m	ł	EL = Extre	emly Lo	w	100		Concr	ete	5000		Silty	y Sand			
TT56	Diamond Core	45mm	MC	>PL		VS = Very Soft	VL = Very Loose	RS = Residual So	li	1	/L = Very	Low				Fill				Cla	y Sand			
HQ	Diamond Core	-63mm	MC	=PL		S = Solt	L = Loose	XW = Extremely	Weathered	a 1	= Low	m Ctr	neit			Clay				Silty	y Clay			
NMLC	Diamond Core	-o∠mm	MC	Dry		r = ri/m St = Stiff	MU = Medium Dense	SW = Slightly Ma	athered		n = Mediu liab = U	um Stre	ngth			Sand		1	1710	Gra	velly Cla	Clay		
PCD	Polycrystallatio	n-Diam	ond M=	Vioist		VSt = Verv Stiff	VD = Very Dense	F = Fresh	and CI CU	1	/H = Ven	High		100	0000000	Grave	•	8688	sillikili	Ser	ndstone	July		
AV	Auger with V-b	it	W=	Wet		H = Hard					H = Extr	emly Hi	igh			Sandy	Clay			Sha	ale			
AT	Auger with TC-	bit															-							

SOILSROCK ENGINEERING PTY LTD | ABN 83 155 012 614

SSPP (Sydney South) revised and additional documentation - (0077540 Sydney South) revised and additional documentation - (00

								BOREHOL	E LO	G						
		Client: Project: .ocatio	: n:	FUZORT HEATHO 1 - 21 DI	FINN F COTE ILLWY	PTY LTD HALL - DE NNIA GRO	TAILED GEOTEC	HNICAL SITE INVEST E NSW 2233	IGATIO	N	BORE Page: Date S	HOLE NO	D.		BH 08 1 of 4 15/12/2017	
101	INIOCK	Date:		5/01/201	8						Date C	omplete	d		15/12/2017	
Equipme	ent:	Project	No.: TERRI	SRE/275	5/HC/1	7 Diameter:	90mm		Coring	Size:	Logge	d/Checke	ed by: RL Surfa	ace Approx	H.C/J.C	
Driller:	E	BG DRIL	LING		Drillin	ng Method:	SOLID F	LIGHT AUGER	Inclinat	ion:	90°	i	Easting: Northing	1:		
L.	Τd				0				Soils	Classifi	cation					
Groundwate Record	ield Tests S	Sample ID	RL	Depth (m)	Graphic Lo		Material Des	cription	Moisture Condition	Strength Consistency)	Jensity Index	Rem	narks a	nd Additi	onal Observ	vations
Z D	<u> </u>		_	0.1		SILTY	Dark brown silty	clay with trace of fine		č		Fill Mater	rial			
ERIN			-	-		CLAY:	grained sand ar rounded geavels.	nd sub-augular to sub-	р	-	_					
AUG			-	-					D							
N CC		2	11.5	0.5		GRAVELL	Y Pale grey, brown	silty clay with red/orange				Augering	slowly			
			_	_		SILTY CLAY:	motted and some angular to sub-ro	e dark brown, black sub- bunded gravels. Medium					-			
ä			-	-			to high plasticity.	Ũ								
		2	11.0	1.0												
			-	-												
			-	-												
		2	_ 10.5						D							
			-	-												
			-	-												
		2	_ 10.0	2.0												
			-	-					to							
			-	-						н	-					
		2	- 09.5	25												
		É														
			-	-					М							
			_	_												
		2	.09.0	3.0												
			-	-												
			-	-												
		2	08.5	3.5												
			-	-												
			-	-												
		2	08.0	4.0		GRAVELL	Pale arey to white	clay with grange motted				Augering	slowly	and difficult		
			-	-		SILTY	and sub-angular to	o sub-rounded dark				Augening	Slowiy		y	
			-	-		CLAY:	DIOWII, DIACK GIAV	eis.								
		2	.07.5	4.5					м	н	-					
			-	-												
			-	_												
		2	07.0	5.0												
Symt	ols & Abbrevia	tions:				R = Refusa	al N = SPT V	alue								
Equipr	nemt/Method		Moistur	e Condition	Stren	igth	Density Index	Weathering	Streng	ath	g	Grafic Log Sy	ymbols			
HA	Hand Auger		PL=Plas	stic limit	Cohe	vice Soils	Cohesionless Soils	Rock Classification	EL = E	xtremly Lov	*	C	oncrete		Silty Sand	
HQ	Diamond Core-45m	m	MC=PL		vs =	very Soft	vL = very Loose	KS = Kesidual Soll XW = Extremely Weathered		w		Fi	lav		Silty Clav	
NMLC	Diamond Core-52m	m	MC <pl< td=""><td></td><td>F = F</td><td>irm</td><td>MD = Medium Dense</td><td>DW = Distinctly Weathered</td><td>M = M</td><td>edium Stren</td><td>ngth</td><td>Si</td><td>lit</td><td></td><td>Gravelly Clay</td><td></td></pl<>		F = F	irm	MD = Medium Dense	DW = Distinctly Weathered	M = M	edium Stren	ngth	Si	lit		Gravelly Clay	
NQ	Diamond Cored-47r	mm	D=Dry		St = \$	Stiff	D = Dense	SW = Slightly Weathered	High =	н	Control of	Sa	and	000	Gravelly Silty Cl	ay
PCD	Polycrystallation-Dia	amond	M=Moist	t	VSt =	Very Stiff	VD = Very Dense	F = Fresh	VH = \	/ery High		G	ravel		Sandstone	
AV	Auger with V-bit		W=Wet		H = F	lard			EH = 6	Extremly Hig	gh 🚪	Sa	andy Clay		Shale	
AI	Auger with TC- bit								=	Water Tabl	e Level	REMARK	(S: Standp	ipe installed t	o 10.0m	
0000	(Oudnov Cout	h) rovi	cod o	nd odditi	anala	da au ma a nta	SOILSROCK ENGINE	ERING PTY LTD ABN 83	3 155 012	614					Dagad	01 of 267

THREAH CALC FOUNDATIONS ' (Sydney South) revised an **Siyir**a www.soilsrock.com.au | info@soilsrock.com.au

	150 A							BOREHO	LE L	.OG					
		Client:		FUZORT	FINN P	TY LTD					BORE	IOLE NO).	BH 08	
		Projec	t:	HEATHC				NCAL SITE INVES	STIGATI	ON	Page:	hautad.		2 of 4	
10	livock	Date:	011.	5/01/201	8		VE, HEATHCOTE N	377 2233			Date C	ompleted	d	15/12/2017	
		Projec	t No.:	SRE/275	5/HC/1	7					Logged	d/Checke	ed by:	H.C/J.C	
Equipm	nent:			R	Hole D	Diameter:	90mm		Coring	Size:	-	F	RL Surface A Easting:	Approx.: 212.0	
Driner.		BG DRI	LLING		Drillin	g method:	SOLID FLIC	SHI AUGER	mennau		90	٢	Northing:		
ater	SPT	٩		ĉ	_{oo}				Soils	Classifi	cation	-			
subre	ests	ple	Å	th (n	lic L		Material Descrip	tion	ion le	jth ency)	ndex	R	emarks and	d Additional Observatio	ns
Re	PI T	Sam	-	Dept	rapł		•		oistu onditi	treng nsiste	sity I				
Ū	Fie				G				≥ŏ	(Cor	Den				
NG NG			-	· _			Pale grey to white cla motted and sub-anguing	ay with orange				Augering	slowly and di	lifficulty	
LET JER			-	_		CLAY:	dark brown, black gra	avels.							
			_												
ŠР			206.5	5.5											
ð X			_												
H			-												
			206.0	6.0											
			-						м						
			-	-					IVI	п	-				
			205.5	6.5											
			-												
			_												
			-	· _											
			205.0	7.0											
			_												
			-												
			204.5	7.5											
						DE	(START CORING AT	7.5m)							
							FER TO CORE BORE	HOLE LOG							
Symb	ols & Abbrevi	iations:				R = Refus	al N = SPT Va	lue							
Equipm	nemt/Method		Moisture	Condition	Stren	gth	Density Index	Weathering		Strengt	h	Gra	afic Log Symbo	ools	
НА	Hand Auger		PL=Plast	ic limit	Cohe	sive Soils	Cohesionless Soils	Rock Classification		EL = Ex	tremly Low		Concre	Silty Sand	
TT56	Diamond Core-45	Smm	MC>PL		VS =	Very Soft	VL = Very Loose	RS = Residual Soil		VL = Ve	ry Low		Fill	Clay Sand	
HQ	Diamond Core-63	Smm	MC=PL		S = S	oft	L = Loose	XW = Extremely We	athered	L = Low			Clay	Silty Clay	
NMLC	Diamond Core-52	2mm	MC <pl< td=""><td></td><td>F = F</td><td>irm</td><td>MD = Medium Dense</td><td>DW = Distinctly Wea</td><td>athered</td><td>M = Med</td><td>dium Streng</td><td>gth</td><td>Silt</td><td>Gravelly Cla</td><td>ay</td></pl<>		F = F	irm	MD = Medium Dense	DW = Distinctly Wea	athered	M = Med	dium Streng	gth	Silt	Gravelly Cla	ay
NQ	Diamond Cored-4	17mm	D=Dry		St = S	Stiff	D = Dense	SW = Slightly Weath	nered	High = H	4		Sand	Gravelly Sil	ty Clay
PCD	Polycrystallation-I	Diamond	M=Moist		VSt =	Very Stiff	VD = Very Dense	F = Fresh		VH = Ve	ry High		Grave	el Sendstone	
AV	Auger with V-bit		W=Wet		H = H	lard				EH = Ex	tremly High	n	Sandy	y Clay Shale	
AT Auger with TC- bit										11					
										<u> </u>	ter Table Le	evel 📘 RE	MARKS: Standp	pipe installed to 10.0m	
							SOILSROCK ENGINEE	RING PTY LTD AB	N 83 155 (012 614					

SSPP (Sydney South) revised and additional documentation - (201/SSH019) Part 8 www.soilsrock.com.au | info@soilsrock.com.au

BOREHOLE LOG																							
1		Clien	nt:	FUZO	RTINNI	PTY LTD					BOR	EHO	LE NO	D:						B	BH 0	8	
14	\sim	Proje	ect:	HEAT	HCOTE		GEOTECHNICAL SI	TE INVESTI	GATIC	N	Page:	Stort-	4.							451	3 of 4		
1011	lock	Date	:	5/01/2	018	INNIA GROVE, HE	EATHCOTE NSW 223	3			Date (Compl	eted:							15/	12/20)17)17	
		Proje	ect No:	SRE/2	75/HC/	17					Logg	ed/ Ch	ecked	by:						Н	.C/J.	С	
Equipmen	t HAN	JIN Da	&B - 8D)	Hole D	iameter	76mm		Corir	ng Siz	e:		5	2mm	1				R.L S East	Surfa	ce A	pprox.	212.0
Driller:	BG DRILLI	NG	1	1	Drilling	g Metho(NMLC		Incli	natio	1:			90°					Nort	hing:			
<u>ب</u>					5								Rock	Clas	ssific	atio	1						
lwate ord	Lift	le ID		٤ ٤	c Fo				Weat g	herin I	Esti Str	imated ength	a) (RQD	%	Def	ect Sj mr)	pacin: n)	g	Rema	arks and
ound Rec	arre	amp	R	bepth	aphi	Ma	aterial Description					-	- MD	ated	Mpa)						-	Adc Obse	litional rvations
ษั		05			ō				S X X	SW FR	╝┥┙	≅ ∓ ₹	EH IS,eo	stim	0-25	25-50 50-75	75-90 >90	0-20	20-60 30-20	09-00	> 600		
													_	ш						~	!		
			-	-																			
			-	-																			
			-	7.5		(STA	ART CORING AT 7.5m)																
			_			CLAY: Hard brow	wn hard clay with silt	, medium to												\square		Residual Soil	developed from
			-	-		nign plast	icity.					И	$ \rangle$	/ \	$\langle $	\mathbb{N}				K	t	he rock mass	s structure and pric are no longer
			_	-							\boldsymbol{X}	1N	/	$\backslash /$	\land	И			ИГ	M	e	evidence.	Ū
			204.0	8.0			autromoly weathered	to highly			4		Ν_	<u> </u>	_¥		\mathbb{N}				N		
			-	-		weathered	d shale with siltstone la	aminations															
			_	_		and some indulated	e medium to high irons bands. Extremely low	tone to very low															
			-	-		strength.					•		-0.0	015 0.3	29								
	1st		203.5	8.5																			
			-	-										06 1	70				╘╘┢	Цļ			
			-	-									0.0	. 00	12					ЦI			
			203.0	9.0		SHALE: Grey high	nly weathered shale v	with siltstone															
			-	-		laminatior	is. Very low strength.				•		-0.0	98 1.9	95								
			-	-																			
			_	-							•				~~								
			202.5	9.5									0.0	95 1.9	90								
						(CORIN	G TERMINATED AT 9.6r	n)												┝╇┽			
Symb	ols & Abbr	eviati	ons:	5		R = Refu	sal N = SPT Va	lue							1.								
Equipm	nemt/Method		N	loisture	Condition	Strength	Density Index	Weathering			St	rength			Gra	fic Lo	g Sym	bols					
HA	Hand Auger		F	L=Plastic	: limit	Cohesive Soils	Cohesionless Soils	Rock Classif	ication		EL	= Extre	mly Low		111010		Con	crete			Silty	Sand	
TT56	Diamond Core	-45mm	N	IC>PL		VS = Very Soft	VL = Very Loose	RS = Residu	al Soil		VL	= Very	Low				Fill				Clay	Sand	
HQ	Diamond Core	-63mm	N	IC=PL		S = Soft	L = Loose	XW = Extrem	tely We	athered	L	= Low		att.	THERE		Clay				Silty	Clay	
NMLC	Diamond Core	-52mm	N.	IC <pl< td=""><td></td><td>F = Firm</td><td>MD = Medium Dense</td><td>DW = Disting</td><td>tiy Wea</td><td>thered</td><td>M</td><td>= Mediu</td><td>m Streng</td><td>gth</td><td></td><td></td><td>Silt</td><td></td><td>1</td><td>·</td><td>Grav</td><td>elly Clay</td><td></td></pl<>		F = Firm	MD = Medium Dense	DW = Disting	tiy Wea	thered	M	= Mediu	m Streng	gth			Silt		1	·	Grav	elly Clay	
NQ	Diamond Core	d-47mr	n l	D=Dry		St = Stiff	D = Dense	SW = Slightly	y weath	ered	Hi	gn = H	Line.			8888	San	u al	Stilling	Undille.n	Grav	eily Silty Cla	
PCD	Porycrystallatic	on-Diam	nond M	-Moist		vst = Very Stiff	vu = Very Dense	r = Fresh			VI	= Very	righ				Grav	rei			Sand	ISTONE	
AV	Auger with V-b	- bit	v	v=vvet		m = Hard					EF	- = Extre	amiy Higi	ų.			san	ay Clay			shal		
											-	<u>▼</u> = Wa	ater Table	e Level		REMA	RKS: S	Standpip	e install	ed to 10).0m		
					-				TD A	BN 83	155 012	2 614			_								
SSPP (Sydney S	outh)	revis	ed and	d addit	ional document	ation - (2017SSH)	1 ENVIRONME	NIAL @soilsr	FOUN ock.co	DATIOI n.au	NS										Page 1	93 of 267

	geotechnical engi		
CLENT:	FUZORTINN PTY LTD	TITLE:	CORING PHOTOGRAPH
PROJECT:	HEATHCOTE HALL	BOREHOLE NC): BH 08
ADDRESS:	1 - 21 DILLWYNNIA GROVE, HEATCOTE	SCALE:	NTS
PROJECT NO:	SRE/275/HC/17	DATE:	15/12/2017
	CORIN	G START AT 7.5m	
BH8 7.5m			Same Ala Prill
8.5m	End at 9.6m		
	CORING T	ERMINATED AT 9.6m	
	SOILSROCK ENGINEER GEOTECHNICAL EN www.soilsrock.cor	NG PTY LTD ABN 83 VIRONMENTAL FOUN n.au info@soilsrock.cor	155 012 614 DATIONS n.au

	and the second se							BOREH	OLE	LOG	Ì			
		Client	: 1	UZOR	rinn p	TY LTD					BORE	IOLE NO.		BH 09
		Projec	rt: I	HEATH	COTE H	HALL - [DETAILED GEOTEC	HNICAL SITE IN	VESTIG	ATION	Page:			1 of 4
10	bilrock	Locati	ion:	1 - 21 D	LLWY	NNIA GI	ROVE, HEATHCOTE	E NSW 2233			Date S	tarted:		14/12/2017
		Date:	t National State	5/01/201	8	7					Date C	ompleted		15/12/2017
Equip	ment:	DANDO	D TERRIER	3RE/27	Hole D	/)iameter:	90mm		Coring S	Size:	-	RL Sur	face Appro	x.: 210.0
Driller	:	BG DR	ILLING		Drillin	a Metho	d: SOLID FLIGH	IT AUGER	Inclinati	on:	90°	Easting	g:	
	·		т			9						Northin	ng:	
ter	SPT	0		-	bo				Soils	Classifi	cation			
lwat ord	sts	le II		Ē	c Lo				<u>ہ</u> د	در) ارد	dex			
und Rec	Te	dme	R	epth	ihq		Material Descrip	ption	stur ditio	engt	ά Σ	Remark	s and Ad	ditional Observations
Gro	ield	S		ŏ	Gra				Moi Con	Stre	ensit			
	ш						<u> </u>			0	ă			
			-	0.1		SILT	sand, roots and sub	ace of fine grained p-angular to sub-				Fill Material		
ЦЦ ЦЦ			-	-			rounded gravels.	-	D	-	-			
AUC			_	_										
SF			209.5	0.5										
NO			-	-			Grevish brown silty cl sub-angular and si	ay with angular to ub-rounded iron-				Hardsetting Res	idual Soil	
Z Z			-	-		OLAT.	stained gravels. Mediu	m plasticity.						
L)			_	_										
			209.0	1.0										
			_	-										
			-	-										
			-	-										
			208.5	1.5										
			_	_										
	SPT		_	-					-					
	(6,11,23) Np=34		-	-					D	н	-			
	Np-04		208.0	2.0										
			_	_										
			_	-										
			-	-										
			207.5	25										
			201.5_	2.5										
			_	_										
			_	-										
				-										
		-	207.0	3.0		SILTY	Reddish brown, light g	rey silty clay with				Hardsetting Res	idual Soil	
	SPT		_	_		CLAY:	orange motted and sor	me angular to sub-				0		
	(8,17,25/30mm)		_	_			angular and sub-round gravels.	ed iron-stained						
	Np=R		_	-			0							
		-	206.5	3.5										
			_	_										
			_	_										
			_	-										
			206.0	4.0					D	н	-			
			-	-										
			_	_										
			_	-										
		-	205.5	4.5										
	SPT		-	-										
	(22,30,25/70mm)			_										
	Np=R		205.0	- -										
			200.0	5.0		0.74.7		5.X.			1	1		
Sym	bols & Abbrevia	lions:	deleture e	allat	B 44	R = Refu	sal N = SPT Va	lue					Burghat	
Equip	Hand Augor		noisture Co	nation	Cohoris	a Soite	Cohesionless Soils	weathering Bock Clossification		Strengt	fremly Lev	Grafic Log	Concrole	Silly Poord
	Diamond One of				VC - W					M - LA	mul mu		E	Charles Parad
1100	Diamonu Core-40Mi		10-01		9 Vel	your	ve - very coose	No - Residual Soll	ant and	VL - Ve	J LOW		Charl	olay Sanu
HQ	Diamond Core-63mi	n 1	WC=PL		5 = Solt		L = LOOSE	XW = Extremely W	eathered	L = Low		Internation	Clay	Silty Clay
NMLC	Diamond Core-52m	n 1	MC <pl< td=""><td></td><td>F = Firm</td><td></td><td>MD = Medium Dense</td><td>DW = Distinctly We</td><td>athered</td><td>M = Mee</td><td>dium Stren</td><td>gth Andotobaster</td><td>Silt</td><td>Gravelly Clay</td></pl<>		F = Firm		MD = Medium Dense	DW = Distinctly We	athered	M = Mee	dium Stren	gth Andotobaster	Silt	Gravelly Clay
NQ	Diamond Cored-47n	m	D=Dry		St = Stiff		D = Dense	SW = Slightly Weat	hered	High = H	1		Sand	Gravelly Silty Clay
PCD	Polycrystallation-Dia	mond 1	M=Moist		VSt = Ve	ery Stiff	VD = Very Dense	F = Fresh		VH = Ve	ery High		Gravel	Sandstone
AV	Auger with V-bit	1	W=Wet		H = Hard	1				EH = Ex	dremly Hig	h 📃	Sandy Clay	Shale
AT	Auger with TC- bit									<u> </u>	Water Tabl	e Level 📘 REMA	RKS: Standpir	be installed to 10.0m
										- '			C1	
							SOILSROCK ENGINEE	RING PTY LTD AI	BN 83 155	6 012 614				
SSP	P (Sydney Sout	h) revis	sed and a	additior	al doc	umenta	tion - (2017SSH01	NVIRONMENTAL 9) Part 8_	FOUNDA	TIONS				Page 195 of 267
l I	• •						www.soilsrock.co	orn.au into@soilsro	CK.COM.AL	L L				-

	- Charles							BOREHOL	E LO	ЭG			
		Client		FUZORT	INN P	TY LTD					BORE	HOLE NO.	BH 09
		Projec	:t:	HEATHC	OTE I	HALL - DI	ETAILED GEOTECHN	ICAL SITE INVESTIG	GATION		Page:		2 of 4
10	Luck	Locati	on:	1 - 21 DI	LLWY	NNIA GR	OVE, HEATHCOTE N	ISW 2233			Date S	tarted:	14/12/2017
		Date:		5/01/201	8	-					Date C	ompleted	15/12/2017
Equipn	nent:	DANDO	TERRI	SRE/275	Hole D	/ lameter:	90mm		Corina	Size:	Logge	d/Checked by: RL Surface	Approx.: 210.0
Driller:		BG DR	ILLING		Drillin	a Method:	SOLID FLIGHT	AUGER	Inclinati	on:	90°	Easting:	
						,				<u>.</u>		Northing:	
ter	SPT	Δ		Ê	og				Solls	Classifi	cation	-	
dwa	sts	ole I	-1	u) u	ic L		Material Descr	intion	e 5	ncy)	харг	Remarks ar	nd Additional Observations
Rec	d Te	aml	œ	ept	aph		Material Deser	iption	oistu nditi	'eng' siste	ity Ir	itemarks a	
õ	Tiel	s			Ģ				≚ S	Con	Dens		
z O	_					SILTY F	Reddish brown, light gre	y silty clay with orange					
LTIC KIN			_	_		CLAY: n	notted and some angular	to sun-angular and sub					
			-	-			oundoù non olamoù graf	0.01					
P P			204.5	5.5					-				
A D			_	_					D	н	-		
			-	-									
ā			-	-									
			204.0	6.0									
	CDT		-	-		SILTY F	Reddish brown, pale gre prance motted and some	ey, white silty clay with angular to sub-angular					
	(16,27,32)		-	-		a	and sub-rounded iron-sta	ained gravels and trace					
	Np=59		_	_		C C	or carbonaceous debris.						
		-	203.5	6.5					D	н	-		
			-	-									
			-	-									
			203.0	7.0									
						CLAY: F	Pale grey, brown clay w	vith some silt and sub-				Augering slow	
			-	-		a n	angular and sub-rounde nedium to high plasticity.	d iron-stained gravels,					
			-	-									
			202.5	7.5									
			-	-									
			_	-									
			-	-									
			202.0	8.0									
			_	_									
			-	-									
			201.5	8.5									
			-	-					М	н	-		
			-	-									
			_	_									
			201.0	9.0									
			-	-									
			-	-									
			200.5	9.5									
			-	-									
			-	-									
			200.0	10.0									
			-	-									
			_	_			(START CORING A	T 10.2m)					
			-	-			REFER TO CORE BOR	EHOLE LOG			ĺ		
Sym	bols & Abbrev	lations	:			R = Re	fusal N = SPT Va	lue					
Equip	memt/Method		Moistu	re Condition	Stre	ngth	Density Index	Weathering	Stre	ength	Low	Grafic Log Symbols	Diller Dana J
HA	Diamond Court	Smer	PL=Pla	iatic ilmit	Coh	Vor: 0-7	Conesioniess Soils	ROCK Classification	EL ·	- Extremity	LOW	Concrete	Sinty Sand
1156	Diamond Core-4	ann.	WC>PL		VS	very soft	VL - Very Loose	Rosidual Soll	VL -	- very Low		Pill	City Sand
HQ.	Diamond Core-6	2mm	MC=PL		5=	Jon	L - Loose	DW = Distinctly Weathere	u L=	Madium C	Ironath	Clay	Silly Clay
NMLC	Diamond Core-5	47~~~	MC <pl< td=""><td></td><td>P = 1</td><td>e</td><td>ND - Nealum Dense</td><td>Sw = Sisteriory Weathered</td><td>. M=</td><td>wiedium Si</td><td>uangtri</td><td>Silling Silling Silling</td><td>Gravelly Clay</td></pl<>		P = 1	e	ND - Nealum Dense	Sw = Sisteriory Weathered	. M=	wiedium Si	uangtri	Silling Silling Silling	Gravelly Clay
NQ	Diamond Cored-	∾/mm	D=Dry	at	St=	SUII		Svv - Signuy Weathered	High	- H		Sand	Snaveny Sity Clay
PCD	Augenvillation	-Ulamond	M=MOI	at.	vst	- very Still	VD = Very Dense	r = riesh	VH	- very High	Hiat	Gravel	Shala
AT	Auger with V-bit	bit	vv=vve		H=	naru			EH	- Extremiy	riigh	Sandy Clay	onale
									<u> </u>	 Water Ta 	able Level	REMARKS: Standpip	be installed to 10.0m
							SOILSROCK ENGIN	EERING PTY LTD ABN 8	33 155 01	2 614			
SSPP	(Sydney Sou	uth) rev	/ised a	nd additi	ional (documer	ntation ce(2ንወ¢ፑዊዓንዙ (www.soilsroc	(15) KOMMENTAL FOI	JNDATIO	NS			Page 196 of 267

BOREHOLE LOG															
	Client: FI			FUZO	RTINN	PTY LTD				BOREHOLE	NO			BH (09
		Proj	ect:	HEAT	HCOTE	HALL - DETAIL	ED GEOTECHNICAL	SITE INVESTIG	ATION	Page:				3 of	4
10 <u>i</u>	liock	Loca	ation:	1 - 21	DILLW	YNNIA GROVE,	HEATHCOTE NSW 2	233		Date Started:	. d.			14/12/2	2017
	00.0	Proj	ect No:	SRE/2	275/HC/	17				Logged/ Chec	eu. :ked b	y:		H.C/J	I.C
Equipme	nt: HAN	JIN D	&B - 8D)	Hole D	iameter	76mm		Coring Si	ize:	52	mm		R.L Surface A	Approx. 210.0
Driller:	BG DRILL	.ING			Drilling	g Methoc	NMLC		Inclinatio	on:		90°		Easting: Northing:	
										F	Rock (Classi	fication		
/ater d	Į,	₽		Ê	Log				Weathering	Estimated	(cs	RQD%	Defect Spacing	Remarks and
nudv	Irrel	mple	RL	pth	phic		Material Description	I		Strength	(Mpa	ed U		(mm)	Additional
6 G	B	Sa		ă	Gra				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	╘╙╡┙╸╸╺╴╴╴	S(50)	timat (M	-25 5-50 5-90	-20)-60 -200)-600 600	Observations
									- ^ 0 0 -		_	Est	0 22 22 22 ^	~ 200 20 v	
			-	_											
			_	_											
			-	-											
			200.0	10.0											
			_	_		(S	TART CORING AT 10.	2m)							
			-	-	/				\mathbb{N}	10 H H I I I I I I I I I I I I I I I I I		Λ /			
			- 199.5	10.5	1\ /				\mathbb{N}	$ \mathbf{N} $	\setminus /	11			
					$ \rangle /$				XII		$\left \right\rangle /$	\mathbb{N}			
			-	-	V					ШМП	IV	IV		111N/111	
			-	-	ΙA		CORELOSS	/	(IN I	Π	$ \wedge$	A			
			199.0	11.0	$ / \rangle$					Π/Π	$ \rangle\rangle$	$ \rangle$			
			-	-	$ / \rangle$				$ \rangle$	/ N	/	$\ \cdot \ $		I/IIIN	
	<u>st</u>		_	_	$\langle \rangle$					V]	۷١		/ N	
			-	-		SHALE: Extrem	nely weathered grey sh baceous. Very low stree	ale with lense of			0.07	1 4 0			
	198.5					·····	.g			0.07	1.40				
			_	_											
			-	-						•	0.07	1.36			
			- 198.0	- 12.0							0.07	1.00			
			-	_				12 2m)						┽┼┩┽┼┼┼┼	
			_	_		(COK	ING TERMINATED AT	12.2111)							
			-												
			-	-											
			_	_											
			-	-											
			_												
			-	-											
			-	-											
			_												
			-	-											
			-												
				_											
			-												
				-											
			-	-											
				L _							L				
Symb	ols & Abbrev	viation	15:		1	R = Refu	vsal N = SPT Va	lue				1.1			
Equipm	nemt/Method		Mol	sture Co	ndition	Strength	Density Index	Weathering		Strength		Grafic	Log Symbols		
HA	Hand Auger		PL=	Plastic lir	nit	Cohesive Soils	Cohesionless Soils	Rock Classificatio	n	EL = Extremly Low	'	11010101	Concrete	Silty San	d
TT56	Diamond Core-4	5mm	MC	PL		VS = Very Soft	VL = Very Loose	RS = Residual So	il	VL = Very Low			Fill	Clay San	d
HQ	Diamond Core-6	3mm	MC=	PL		S = Soft	L = Loose	XW = Extremely V	Weathered	L = Low		1420303	Clay	Silty Clay	
NMLC	Diamond Core-5	2mm	MC	PL		F = Firm	MD = Medium Dense	DW = Distinctly W	/eathered	M = Medium Stren	gth	20000	Silt	Gravelly	Clay
NQ	Diamond Cored	4/mm	D=l	July		st = Stiff	D = Dense	SW = Slightly We	athered	High = H			Sand	Gravelly	Siny Clay
PCD	Auger with V Eit	-Diamor	10 M=N	Net		vst = Very Stiff	VD = Very Dense	r = rresh		VH = Very High	b		Gravel	Sandstor	ie.
AT	Auger with V-bit	bit	vv=/	rot		n - nard				En - Extremity Hig			eandy Cl	snale	
	👱 = Water Table Level 📲 REMARKS: Standpipe installed to 10.0m														
							SOILSROCK EN GEOTECHNIC	GINEERING PTY LT	D ABN 83	155 012 614 DATIONS					
SSPP	(Sydney So	outh)	revise	d and	additi	onal docume	ntation - (201755	H019) Part ⁶⁸⁰	Dsoilsrock.co	m.au					Page 197 of 267

	soil 🔨	1100	; k
	geotechnical engine	ering consul	tants
CLENT:	FUZORTINN PTY LTD	TITLE:	CORING PHOTOGRAPH
PROJECT:	HEATHCOTE HALL	BOREHOLE NO:	ВН 09
ADDRESS:	1 - 21 DILLWYNNIA GROVE, HEATCOTE	SCALE:	NTS
PROJECT NO:	SRE/275/HC/17	DATE:	15/12/2017
	CORING	START AT 10.2m	
BH9 10.2 m	CORE LOSS	CORE LOSS	CORE LOSS
11.2 m	LOSS	that have	
12.2 m END AT	Г 12.2 m		
_			
	CORING 1E	RMINATED AT 12.2m	
		IG PTY LTD ABN 83 18	35 012 614 ATIONS
	www.soilsrock.com	i.au info@soilsrock.com	au

							BOREHO)LE L	OG			
/0]		Client: Projec Locatio Date: Project	t: on: t No :	FUZORT HEATHO 1 - 21 DI 5/01/201	INN P OTE I LL WY 8	TY LTD HALL - DE ⁻ 'NNIA GRC 7	TAILED GEOTECHNICAL SITE INVES DVE, HEATHCOTE NSW 2233	TIGATIOI	N	BOREH Page: Date St Date C	HOLE NO. tarted: ompleted	BH 10 1 of 2 14/12/2017 14/12/2017 H C/L C
Equipm	ent:	DANDO	TERRIE	R	Hole [, Diameter:	90mm	Coring	Size:	-	RL Sur	face Approx.: 211.0
Driller:		BG DRI	LLING		Drillin	g Method:	SOLID FLIGHT AUGER	Inclina	tion:	90°	Easting	g:
-	F				-			Soils	Classifi	cation		·9.
Groundwate Record	Field Tests Sh	Sample ID	RL	Depth (m)	Graphic Log		Material Description	Moisture Condition	Strength (Consistency)	Density Index	Remark	s and Additional Observations
COMPLETION F AUGERING			- - - 210 5	0.1 0.5		CLAYEY SILT:	Brown clayey silt with trace of fine grained sand and gravels.	D	Vst	-	Fill Material	
DRY ON C	SPT (8,13,16) Np=29		210.0 <u> </u>			SILTY CLAY:	Reddish brown silty clay with trace of fine s angular to sub-rounded black gravels. Low medium plasticity.	ub- to				
			 209.5	 1.5				D	Vst	-		
	SPT (13,22,30) Np=52		_ _ _ 209.0	_ _ _ 2.0		SILTY CLAY:	Reddish brown, pale grey silty clay with fine to medium iron-stained gravels. Medium to high plasticity.					
			- - 208.5_ - -	 2.5 								
	SPT		_ 208.0	 3.0				D	н			
	(12,15,21) Np=36		_ 207.5 	- - 3.5 -								
			_ 207.0 _ _	- 4.0 -								
	SPT		_ 206.5	4.5		SILTY CLAY:	Grey, orange motted silty clay. Medium to high plasticity.					
	(9,16,22) Np=38		_ _ 206.0	_ 5.0				D	н	-		
Sym	bols & Abbre	viations	s:			R = Ref	usal N = SPT Value					

Symbols & Abbreviations:

Equipr	nemt/Method	Moisture Condition	Strength	Density Index	Weathering	Strength	Grafic Log Symbols	
HA	Hand Auger	PL=Plastic limit	Cohesive Soils	Cohesionless Soils	Rock Classification	EL = Extremly Low	Concrete	Silty Sand
TT56	Diamond Core-45mm	MC>PL	VS = Very Soft	VL = Very Loose	RS = Residual Soll	VL = Very Low	Fill	Clay Sand
HQ	Diamond Core-63mm	MC=PL	S = Soft	L = Loose	XW = Extremely Weathered	L = Low	Clay	Silty Clay
NMLC	Diamond Core-52mm	MC <pl< td=""><td>F = Firm</td><td>MD = Medium Dense</td><td>DW = Distinctly Weathered</td><td>M = Medium Strength</td><td>Silt</td><td>Gravelly Clay</td></pl<>	F = Firm	MD = Medium Dense	DW = Distinctly Weathered	M = Medium Strength	Silt	Gravelly Clay
NQ	Diamond Cored-47mm	D=Dry	St = Stiff	D = Dense	SW = Slightly Weathered	High = H	Sand	Gravelly Silty Clay
PCD	Polycrystallation-Diamond	M=Moist	VSt = Very Stiff	VD = Very Dense	F = Fresh	VH = Very High	Gravel	Sandstone
AV	Auger with V-bit	W=Wet	H = Hard			EH = Extremly High	Sandy Clay	Shale
AT	Auger with TC- bit							

SOILSROCK ENGINEERING PTY LTD ABN 83 155 012 614
GEOTECHNICAL ENVIRONMENTAL FOUNDATIONS
(South) revised and additional documentation (300/28/84/04/9) @dith@goilsrock.com.gu

SSPP (Sydney South) revised and additional documentation <u>(2017-595+401-9)</u>-Prant 180

	2							BOREH	OLE	LOG				
		Client		FUZOR	TINN F	YTY LTD					BOREH	HOLE NO.		BH 10
		Projec	et:	HEATH	COTE	HALL - C	ETAILED GEOTECH	INICAL SITE IN	VESTIG	ATION	Page:			2 of 2
10	liock	Locati	ion:	1 - 21 D	ILL W۱ 18	/NNIA G	ROVE, HEATHCOTE	NSW 2233			Date St	tarted:		14/12/2017
		Projec	t No.:	SRE/27	5/HC/1	7					Logged	d/Checked by	<i>r</i> :	H.C/J.C
Equipm	nent:	DAND) TERRIER	२	Hole I	Diameter:	90mm		Coring	Size:	-	RL S	urface Approx	к.: 211.0
Driller:		BG DR	ILLING		Drillin	ng Methoo	: SOLID FLIGH	T AUGER	Inclinat	ion:	90°	Easti	ing: nina:	
L	F				_				Soils	Classif	ication	1	a-	
vate d	s SF	e		Ê	Log					ŝ	×			
indv	Fest	bldn	R	pth	ohic		Material Descrip	tion	ture ition	igth tenc	Inde	Rema	rks and Add	itional Observations
Grot R	eld	Saı		De	Gra				Mois	Strer	nsity			
	Ē				_				Ŭ	ů	De			
			-	-	-	SILTY CLAY:	Grey, orange motted si to high plasticity.	ity clay. Medium						
CER GER			-	-	-									
AUA			-		-									
йЧ			205.5	5.5_	-				D	н	-			
۲ ٥			_	-	-									
DR			-		-									
			205.0	6.0	-									
					- 200000000	(A	UGERING TERMINATE	ED AT 6m)						
											1			
	na sta state to to		L		-							1		
Symb	ools & Abbrev	nations:				R = Refu	sal N = SPT Va	lue				1 . C		
Equipr	Hand August		Moisture (ondition	Streng	un Soile	Cohesionloss Sale	Weathering Book Classification	00	Stre	Extremely 1	Grafic	Converte	Pilly Press
TTTT	Diamo Auger	Emer	HC-Fiasuc	minit.	Conesi		Somealomess Solls	Rock Classificatio	all	EL =	CAUGINIY LO			Siny Sano
1156	Diamond Core-4	omm	MC>PL		vs = v	ery Soft	VL = Very Loose	RS = Residual S	DI	VL =	very Low		Fill	Clay Sand
HQ	Diamond Core-6	3mm	MC=PL		S = So	n.	L = Loose	XW = Extremely	Weathered	L = L	.ow	Tatagana	Clay	Silty Clay
NMLC	Diamond Core-5	2mm	MC <pl< td=""><td></td><td>F = Firr</td><td>n</td><td>MD = Medium Dense</td><td>DW = Distinctly V</td><td>Veathered</td><td>M = 1</td><td>Medium Stre</td><td>ength</td><td>Silt</td><td>Gravelly Clay</td></pl<>		F = Firr	n	MD = Medium Dense	DW = Distinctly V	Veathered	M = 1	Medium Stre	ength	Silt	Gravelly Clay
NQ	Diamond Cored-	47mm	D=Dry		St = Sti	ff	D = Dense	SW = Slightly We	eathered	High	= H		Sand	Gravelly Silty Clay
PCD	Polycrystallation-	Diamond	M=Moist		VSt = V	/ery Stiff	VD = Very Dense	F = Fresh		VH =	Very High		Gravel	Sendstone
AV	Auger with V-bit		W=Wet		H = Ha	rd				EH =	Extremly H	ligh	Sandy Clay	Shale
AT	Auger with TC- b	iit												
							SOILSROCK ENGINEER	ING PTY LTD AI	BN 83 155	012 614				
							GEOTECHNICAL EN	VIRONMENTAL	FOUNDA	TIONS				

SSPP (Sydney South) revised and additional documentati	ion - (200173999946)9999.40 amathrag@soilsrock.com.au
· • • •	

Clier		BOREHOLE LOG												
		Client	Client: FUZORTINN PTY LTD Project: HEATHCOTE HALL - DETAILED GEOTECHNICAL SITE INVESTIGATION								BOREH	IOLE NO.		BH 11
		Projec								TION	Page:			1 of 2
Joil/Jock		ion:	n: 1 - 21 DILLWYNNIA GROVE, HEATHCOTE NSW 2233							Date St	arted:		14/12/2017	
		Date: Proiec	t No.:	5/01/2018 SRE/275/HC/17							Date Completed			H.C/J.C
Equipment: DA		DANDO	D TERRIE	R	Hole D	iameter:	90mm		Coring S	Size:	-	RL Sur	face Appro	x.: 212.5
Driller: B		BG DR	ILLING		Drillin	g Method:	SOLID FLIG	GHT AUGER	Inclination:		90°	Easting	g: na:	
PT					_				Soils	Classif	ication	cation		
vate rd	IS SI	<u> </u>		Ē	Log					ŝ	×			
indv	Fest	nple	RL	pth	ohic		Material Descrip	tion	ture	igth	Inde	Remark	s and Add	ditional Observations
èrou R	. pla	Sar		Del	Grap				Mois	Strer	nsity			
0	ĬĹ				Ŭ				-0	ΰ	Ď			
NOI NG			-	0.1		SILT:	Dark brown silt with grained sand, roots	trace of fine and clay, fine sub-						
LET			-	-			angular to sub-round	ded gravels.	D	-	-			
			_	_										
SЧ			212.0	0.5		eii ty	Brown grev silty clay	with trace of fine						
ð	SPT		-	-		CLAY:	sub-angualr to sub-r	ounded gravels.						
DR)	(7,12,16)		_	_			Medium plasticity.							
	Np=28		-	-										
		-	211.5	1.0					D	Vst	-			
			_	-										
			-	-										
			-	15										
						SILTY	Reddish brown and	pale grey silty						
	SPT		-	-		CLAY:	clay, orange motted medium black, vello	with fine to wish ironstained						
	(16,21,34) Nn=55		-	-			gravels. Medium to	high plasticity.						
	NP-00		210.5	2.0										
			_	_										
			-	-					D	ц				
			-	-					D	п	-			
			210.0	2.5										
			-	-										
			-	-										
			-	_										
			209.5	3.0		ODAVELL	Daddiah braum nala	arou and arongo						
	SPT		-	-		Y SILTY	motted gravelly silty	clay, medium to						
	(18,29,33)		_	_		CLAY:	high plasticity. Fine t	to medium						
	Np=62		-	-			gravels.							
			209.0	3.5										
			-	-										
			-	-										
			209 5											
			206.5	4.0					D	н	-			
			-	_										
			-	-										
			208.0_											
			_	_										
	SPT		-	-										
	(17,32,33) Np=67		-	-										
			207.5	5.0										
Symb	ols & Abbrevi	atione				R = Refuee	N - PDT Vie	lue						
Equipri	nemt/Method		Moisture	Condition	Streng	th	Density Index	Weathering		Streng	th	Grafic Loc	Symbols	
НА	HA Hand Auger PL=Plas		PL=Plastic	limit Cohesive Soils		Cohesionless Soils Rock Classification			EL = Extremly		remly Low Concrete		Silty Sand	
TT56	TT56 Diamond Core-45mm MC>PL			VS = Very Soft VL = Very Loose		RS = Residual Soi	esidual Soil VL =		Very Low		Fill	Clay Sand		
HQ	HQ Diamond Core-63mm MC=PI			S = Soft L = Loose		XW = Extremely W	Extremely Weathered L = L		.ow		Clay	Silty Clay		
NMLC	NMI C Diamond Core-63mm MC		MC <pi< td=""><td></td><td>F=Fir</td><td colspan="2">5 = SOIL L = Loose</td><td>DW = Distinctly W</td><td colspan="2">Distinctly Weathered L = Lo</td><td colspan="2">Medium Strength</td><td>Silt</td><td>Gravelly Clay</td></pi<>		F=Fir	5 = SOIL L = Loose		DW = Distinctly W	Distinctly Weathered L = Lo		Medium Strength		Silt	Gravelly Clay
NO	NMLC Diamond Core-52mm N		DeDre		St = CH	F = Firm MD = Medium Dense		SW = Sliabily Was	lightly Weathered M = N				Sand	Gravally Silty Clay
DOD	Dolucestolistics	lineard	Matter		Ver -	long Otill	VD = Voe Doort	C - Eroch	alei eu	angr =	long bilat		Ground	Conductor -
PCD	Porycrystallation-D	Dinoimen	M-MOISE		vst=V	very sum	vD = very Dense	r = rresn		VH = V	rery High		Graver	Sendstone
AV	Auger with V-bit W=Wet H = Hard		ra	EH =			EH = E	Extremly High Sandy Clay Shale						
	Auger with TC- bit													
									BN 83 154	012 614	1			

GEOTECHNICAL | ENVIRONMENTAL | FOUNDATIONS SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8 www.sollsrock.com.au | info@soilsrock.com.au

		BOREHOLE LOG													
		Client:	:	FUZOR	TINN F	PTY LTD				•	BOREH	IOLE NO.	l	BH 11	
r 1		Projec	:t:	HEATH	COTE	HALL - DET	FAILED GEOTECHN	VICAL SITE INVEST	FIGATIO	N	Page: 2 of 2			2 of 2	
101	lrock	Locati	on:	1 - 21 D	ILLWY	'NNIA GRO	VE, HEATHCOTE N	ISW 2233			Date St	arted:		14/12/2017	
		Date:	t No :	5/01/201	18 5/HC/1	7					Date Co	ompleted		14/12/2017 HC/LC	
Equipm	ent:	DANDC	TERRIER	31(L/27)	Hole	/ Diameter:	90mm		Coring	Size:	-	RL Surface Approx.: 212.5			
Driller:		BG DRI	ILLING		Drillir	ng Method:	SOLID FLI	GHT AUGER	Inclinat	ion:	90°	0° Easting:			
	F	<u> </u>							Soils	Classifi	cation	Northin	ig:		
ater d	SP	₽		Ê	-og				00113						
vbr	ests	ple	님	÷	hic		Material Descrip	ption	ion	gth ency	nde	Remarks	s and Additi	onal Observations	
Re	ГPI	Sam	_	Dep	irap				loistu ondit	treng	sity				
G	Fie				U U				≥ŭ	Col S	Den				
NON			_	_		GRAVELLY	Reddish brown, pa	le grey and orange							
ERI			-		-	SILTY CLAY:	high plasticity. Fine 1	to medium gravels.							
NPL			-	-											
CO PF A			207.5	5.0					П	ц					
g			_	-	-				D		-				
RY			-	-											
			-	-											
			206.5	6.0											
						(A	UGERING TERMINAT	ED AT 6m)							
				1											
				1											
				1											
				1											
				1											
				1											
				1											
				1											
				1											
			<u> </u>	<u> </u>											
Sym	bols & Abbre	viations				R = Refus	al N = SPT Val	lue							
Equip	memt/Method		Moisture Condition Strength		ngth	Density Index Weathering			Strength		Grafic Log Sy	mbols			
HA	HA Hand Auger		PL=Plastic limit		astic limit Cohesive Soils		Cohesionless Soils Rock Classification		EL = Extrer		stremly Low		oncrete	Silty Sand	
TT56	Diamond Core-4	45mm	MC>PL		VS =	Very Soft	VL = Very Loose	RS = Residual Soil		VL = Very I	Low	Fill	1	Clay Sand	
HQ	Diamond Core-f	83mm	MC=PL	PI S = Soft		Soft	L = Loose	XW = Extremely Weath	athered L=Low		·		av	Silty Clay	
NIME	Diamond Core (E Jamm	MC-DL				MD = Modium Donan	DW = Distinctly Weath	and	M = Modiu	n Circonath			Cravelly Clay	
NIVILG	Diamond Core-a)2mm	MUSPL		r=r	irm	MD = Medium Dense	Dw = Distinctly weath	erea	M = Mediur	m Strengtn	Sadalahada _		Gravely Clay	
NQ	Diamond Cored	-47mm	D=Dry		St = \$	Stiff	D = Dense	SW = Slightly Weathen	ed	High = H		Sa	ind	Gravelly Silty Clay	
PCD	Polycrystallation	n-Diamond	M=Moist		VSt =	Very Stiff	VD = Very Dense	F = Fresh		VH = Very	High	Gri	avel	Sandstone	
AV	Auger with V-bit	t	W=Wet		H = F	lard				EH = Extre	mly High	Sa	indy Clay	Shale	
AT	Auger with TC-	bit													

SOILSROCK ENGINEERING PTY LTD ABN 83 155 012 61

GEOTECHNICAL | ENVIRONMENTAL | FOUNDATIONS SSPP (Sydney South) revised and additional documentation - (2017 SSH019) Part 8 www.soilsrock.com.au | info@soilsrock.com.au

		BOREHOLE LOG											
		Client: FUZORTINN PTY LTD								BOREHOLE NO. BH 12			
		Project: HEATHCOTE HALL - DETAILED GEOTECHNICAL SITE INVE							Page:	1 of 2			
	Location:			1 - 21 D	ILLWY	NNIA GROVE, HEATHCOTE NSW 2233			Date St	arted:	14/12/2017		
	Date:				18				Date Co	ompleted	14/12/2017		
	Project No.: SRE/2				5/HC/1	7	-		Logged/Checked by: H.C/J.C				
Equipm	ent:	DANDC) TERRIE	2	Hole [Diameter: 90mm	Coring \$	Size:	-	RL Surf	ace Approx.: 211.8		
Driller:		BG DRILLING			Drillin	g Method: SOLID FLIGHT AUGER	Inclination:		90° Easting:		: a:		
, F									cation	9.			
s SF d		₽		Ê	log			-					
core	ests	ple	۲	th (i	ic I	Material Description	e u	lth ency	ndex	Remark	s and Additional Observations		
Re	μ̈́ρ	Sam	-	dec	rapl		oistu ndit	renç siste	sity I				
ō	Fiel	•,		-	Ū		Ξŏ	Con	Dens				
ΖŰ				0.1		SILT: Dark brown silt with fine grained sand,		-					
RIN			_			roots and trace of clay, fine sub-angular							
СЕ GE			_	-		to sub-rounded gravels.	D	-	-				
INC.			_	-									
ЗĞ			211.3	0.5		SILTY Reddish brown silty clay low to medium							
ō	SPT		-	-		CLAY: plasticity with trace of fine sub-angular to							
JR/	(12,20,22)		_	_		sub-rounded black gravels.							
-	Np=42		_	_									
		-	210.8	1.0			D	н	-				
			-	-									
			-	-									
			_	_									
			210.3	1.5									
			-	-		SILTY Reddish brown silty clay, low to medium							
	SPT (10.15.22)		-	-		angular to sub-rouned black gravels.							
	(10,15,22) Np=37		-	-									
			209.8	2.0_									
			_	_									
			_	-			_						
			-	-			D	н	-				
			209.3	2.5									
				2.0									
			_	_									
			_	-									
			208.8	3.0									
			200.0	5.0		SILTY Brown pale grey silty clay, orange							
	SPT		_	_		CLAY: motted, medium to high plasticity with							
	(15,26,32)		_	_		rounded black gravels.							
	Np=58					-							
			208.3	3.5			D	Н	-				
			_	_									
			_	_									
			-	-									
			207.8	4.0		GRAVE Reddish brown, pale grey and grange							
			-	-		LLY motted gravelly silty clay, medium to							
				_		SILTY high plasticity. Fine to medium sub-							
			_	-									
			207.3	4.5			D	н	-				
	SPT		-	-									
	(11,18,24)			_									
	Np=42		-	_									
			206.8	5.0									
-													
Symb	ools & Abbrev	ations				R = Refusal N = SPT Value		444		1 Sugar			
Equipr	nemt/Method		Moisture	Condition	Strer	igth Density Index Weathering		Stre	ngth	Grafic Lo	og Symbols		
HA	Hand Auger		PL=Plast	ic limit	Cohe	sive soils Cohesionless Soils Rock Classificat	ion	EL =	Extremly L	w	Concrete Silty Sand		
TT56	Diamond Core-4	5mm	MC>PL		VS =	Very Soft VL = Very Loose RS = Residual S	Soil	VL =	Very Low		Fill Clay Sand		
HQ	Diamond Core-6	3mm	MC=PL		S = S	oft L = Loose XW = Extremely	Weathere	d L=L	.ow		Clay Silty Clay		

F = Fresh

DW = Distinctly Weathered

SW = Slightly Weathered

M = Medium Strength

High = H

VH = Very High

EH = Extremly High

Silt

Sand

Gravel

Sandy Clay

MD = Medium Dense

VD = Very Dense

D = Dense

F = Firm

St = Stiff

H = Hard

VSt = Very Stiff

NMLC Diamond Core-52mm

Diamond Cored-47mm

PCD Polycrystallation-Diamond

Auger with TC- bit

Auger with V-bit

NQ

AV

AT

MC<PL

D=Dry

M=Moist

W=Wet

Gravelly Clay

Gravelly Silty Clay

Sandstone

Shale
			BOREHOLE LOG														
		Client:		FUZOR1	TINN F	PTY LTD			BOREH	IOLE NO.		BH 12					
1		Project: HEATH			COTE HALL - DETAILED GEOTECHNICAL SITE INVESTIGATION									1 of 2			
Joil/Jock Location: 1-21D				1 - 21 DI	ILLWYNNIA GROVE, HEATHCOTE NSW 2233							Date Started: 14/12/2017					
		Date:	+ No :	5/01/201	8 :/UC/4	7					Date Co	ompleted	bu	14/12/2017 H C/L C			
Fauipme	ent:	DANDC	TERRIE	3RE/273	Hole I	/ Diameter:	Coring S	Size:	-	RI	Surface Approx	211.8					
Drillor					Drillin	a Method:			Inclinati	on:	۹۵°	Ea	sting:	21110			
Driner.		DO DIN			Dimin		GOLIDITLIGITI	AUGEN	mennau	011.	50	No	orthing:				
ter	SPT	0		â	bo				Soils	Classifi	ication						
dwa	sts	ole I	_	и и	ic L	Ma	torial Decorintion	-	e E	h Jcy)	dex	Bon	norko and Add	itional Observations			
Rec	dTe	amp	R	ept	aph	IVId	terial Description		nditio	engt siste	ity In	Ken	naiks and Adu				
Ğ	Field	s			p				Q O	Cons Str	Dens						
zυ	_					GRAVELLY Redd	ish brown, pale gr	rey and orange)							
RIN			_	_		SILTY motte	d gravelly silty cl	ay, medium to									
JGE			-	-		angul	ar to sub-rounded b	lack gravels.									
P AI			206.3	- 5.5					-								
NO NO			_	_					D	Vst	-						
RY	SPT		-	-													
Δ	(9,13,14) Np=27		-	-													
			205.8	6.0													
			-	-		(AUGERII	NG TERMINATED	AT 6m)									
			-	-													
			_	_													
			-	6.5													
			-	-													
			_	_													
			-														
			-	7.0 <u> </u>													
			-	-													
			-	-													
			-	2.5													
			_	-													
			-	-													
			-	-													
			-	3.0													
			-	-													
			_														
			-	-													
			-	3.5													
			_	_													
			-	-													
			-	4.0													
			_	_													
			-	-													
			-	-													
			-	4.5													
			-	-													
			_														
			-	-													
L				5.U	l						1	1					
Sym	ibols & Abbr	eviation	s:			R = Refusal	N = SPT Valu	ar									
Equip	omemt/Method		Mols	ture Conditi	on S	trength De	nsity Index	Weathering		Stren	igth	Gra	fic Log Symbols				
HA	Hand Auger		PL=P	lastic limit	C	ohesive Soils Co	hesionless Soils	Rock Classification	n	EL = 1	Extremly Lo	w	Concrete	Silty Sand			
TT56	Diamond Core	-45mm	MC>	PL	V	S = Very Soft VL	= Very Loose	RS = Residual So	bil	VL =	Very Low		Fill	Clay Sand			
HQ	Diamond Core	e-63mm	MC=	PL	s	= Soft L =	Loose	XW = Extremely	Neathered	L = Lo	w		Clay	Silty Clay			
NMLC	Diamond Core	9-52mm	MC<	PL	F	= Firm MI) = Medium Dense	DW = Distinctly W	/eathered	M = N	Aedium Stre	angth	Silt	Gravelly Clay			
NQ	Diamond Core	ed-47mm	D=D	ry	s	t = Stiff D	= Dense	SW = Slightly We	athered	High	= H		Sand	Gravelly Silty Clay			
PCD	Polycrystallati	on-Diamon	d M=M	oist	v	St = Very Stiff VE) = Very Dense	F = Fresh		VH =	Very High		Gravel	Sendstone			
AV	Auger with V-I	bit	w=w	/et	н	= Hard				EH =	Extremly H	igh	Sandy Clay	Shale			
AT	Auger with TC	- bit															

SOILSROCK ENGINEERING PTY LTD	ABN 83 155 012 614

SSPP (Sydney South) revised and additional documentation - (2017 SSH) Finy Foundations www.soilsrock.com.au | info@soilsrock.com.au

APPENDIX E

Point Load Test Index Results

1. The second	CLIENT:	FUZORTINN PTY LTD	PAGE	1 of 1
	PROJECT:	HEATHCOTE HALL - DETAILED GEOTECHNICAL SITE	TESTED BY:	H.C
	LOCATION:	1 - 21 Dillwynnia Grove, Heathcote, NSW	CHECKED BY:	J.C
voilvrock	PROJECT NO:	SRE/275/HC/17		
	TEST METHOD:	RMS T223	DATE OF ISSUE:	12/01/2018

POINT LOAD STRENGTH INDEX TEST RESULT REPORT

	DEPTH (m)		SAMPLE DESCRIPTION			D	IMENSIC	ONS	RESULTS								
BH ID		Test Type	ROCK TYPE	STRUCTURE	MOISTURE	D (mm)	W (mm)	De (mm)	LOAD, P (kN)	FAILURE MODE	ls (MPa)	Is ₍₅₀₎ (MPa)	Estimated UCS (Mpa)	Estimated Strength			
	7.75	А	SH	BE	AR	30	51	44.14	0.14	3	0.072	0.068	1.36	VL			
	8.4	А	SH	BE	AR	29	51	43.39	0.13	3	0.069	0.065	1.30	VL			
вп 07	8.75	А	SH	BE	AR	43	50	52.32	0.04	3	0.015	0.015	0.30	EL			
	9.15	А	SH	BE	AR	40	51	50.96	0.15	3	0.058	0.058	1.16	VL			
	8.4	А	SH	BE	AR	30.0	51	44.14	0.03	3	0.015	0.015	0.29	EL			
DULOO	8.7	А	SH	BE	AR	35.0	51	47.67	0.20	3	0.088	0.086	1.72	VL			
	9.1	А	SH	BE	AR	26.0	51	41.09	0.18	3	0.107	0.098	1.95	VL			
	9.4	А	SH	BE	AR	27.0	51	41.87	0.18	3	0.103	0.095	1.90	VL			
DUIDO	11.4	А	SH	BE	AR	45.0	51	54.06	0.21	3	0.072	0.074	1.49	VL			
вноэ	11.8	А	SH	BE	AR	45.0	50	53.52	0.19	3	0.066	0.068	1.37	VL			
NOTA																	

Moisture (W) Wet

- (M) Moist
- (D) Dry
- (AD) As Drilled

(AR) As Received

Test Type

D: Diametral Test

Rock Type (SS) Sandstone (ST) Siltstone (SH) Shale (G) Granitic

(MSS) Meta Sandstone (MST) Meta Siltstone

A: Axial Test

(MA) Massive (BE) (IB)

Structure

Bedded Interbedded Laminated (LA) (CR) Crystalline

B: Block Test

Failure Mode

Fracture through fabric oblique to bedding 1 -

2 -Fracture along bedding

Fracture through rock mass 3 -

Fracpture influenced by pre-existing: (J) Joint Plan, 4 -

(M) Microfracture, (F) Foliation, (V) Vein Partial fracture or Chip (Invalid Result) 5 -

I: Irregular Lump Test

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8

Page 206 of 267

APPENDIX F

Laboratory Test Results for Exposure Classification

ENVIRO				GROUP - N	OD	Y -	- Cl	lier	nt r 130	0 42	4 344				<u>Sydne</u> 12 Ash Ph: 02 <u>Perth</u> 16-18	y Lab - En ley St, C 9910 62 Lab - MP Hayden	nvirolab S hatswood 00 / sydn L Laborate Crt Mvare	ervices I, NSW 20 ney@envi ories ie, WA 61	067 irolab.com.au
Client:	Salerary 9. am	andina	1		Client	Projec	t Name	/ Nur	nber /	Site e	tc (ie re	port tit	le):		Ph: 08	9317 25	05 / lab@	mpl.con	n.au
Contact Perso	n: Jordo	chalos		22	1-21	Del	LIVAN	na A	300	a t	Enthe	te S	the	land	Melbo	urne Lat	- Envirol	ab Servic	es
Project Mar:	0.0-1	vouer			PO No	.:	1/101	rupe C	2000	CAL	en a a	in se			1A Dal	more Dr	ive Scores	sby VIC3	179 envirolab.com au
Sampler:	TC	n y Chan ta ba an ga baya ya C			Enviro	lab Qu	ote No	. :							F11.03	3703 23	oo7 men	Journee	envirolab.com.au
Address:	5/110, OAKS 2099 NSW	AVE	DEE	WHY	Date results required: Adelaide Office - Envirolab Services Or choose: standard / same day / 1 day / 2 day / 3 day Ph: 08 7087 6800 / adelaide@envirolab.com.au Note: Inform lab in advance if urgent turnaround is required - arrefure a annue ann									es 7 virolab.com.au es					
Phone:		Mob: 👩	45/11	1044	Additi	onal re	port fo	rmat:	esdat	/ equi	s /				Ph: 07	3266 95	32 / brisk	pane@en	virolab.com.au
Email:	Jorge, Cabaco Henry (Sharon	@ Soils @ Soils @ Soils	srock. irock : srock (Com. and Com. an	Lab Co	ommen	its:								<u>Darwin Office</u> - Envirolab Services Unit 7, 17 Willes Rd, Berrimah, NT 0820 Ph: 08 8967 1201 / darwin@envirolab.com.au				
	Sample i	nformation									Test	s Requi	red				-		Comments
Envirolab Sample ID	Client Sample ID or information	Depth (m)	Date sampled	Type of sample	Ha	Sulfacte	chloide	Reistivity	/								-		Provide as much information about the sample as you can
-{	51	0.5-1	Sp	Sol	X	X	X	X									1		
6	7	1.302	15/12	STAL	X	~	X	~	-			-+	-+			+	-		
		1			-											+			
					-			-		-		-+				-	-		
													-			-	-		
										-						-	-		
		-		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-		_		-				-			-	-		
	and the second second									-					_	-	-		
																-	-		
-									-							-			
1			1												-				2012 State 18 19 19 19
		-		1		-			-										
	1	0							1										
Relinquished b	by (Company): Soles	K Won	reinf	Received by (Com	pany):	ER	S						1		L	ab Us	e Only		
Print Name:	HENRY CHI	u O	-	Print Name:	MT						Job nu	mber:	18	3561		Coo	ling: I	ce / Ic	e pack / None)
Date & Time:	2/1121	2017		Date & Time:	21/12	117	,	11:2	5		Temp	erature	: 2	0.2		Sec	urity se	al: Int	act / Broken/None
Signature:		1		Signature:							TAT	teq - S	SAME	day /	1/:	2 / 3	14	/ \$10	N C
Form 302_V002	12					Issue da	ate: 27	April 20	017	and the second second								0	

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	SOILSROCK ENGINEERING PTY LTD
Attention	Jorge Cabaco

Sample Login Details							
Your reference	Heathcote Sutherland						
Envirolab Reference	182561						
Date Sample Received	21/12/2017						
Date Instructions Received	21/12/2017						
Date Results Expected to be Reported	04/01/2018						

Sample Condition	
Samples received in appropriate condition for analysis	YES
No. of Samples Provided	2 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	24.2
Cooling Method	None
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 182561

Client Details	
Client	SOILSROCK ENGINEERING PTY LTD
Attention	Jorge Cabaco
Address	5/110 Oaks Avenue, Dee Why, NSW, 2099

Sample Details						
Your Reference	Heathcote Sutherland					
Number of Samples	2 Soil					
Date samples received	21/12/2017					
Date completed instructions received	21/12/2017					

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details			
Date results requested by	04/01/2018		
Date of Issue	03/01/2018		
NATA Accreditation Number 2901. This document shall not be reproduced except in full.			
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor

Authorised By

كع

David Springer, General Manager

Envirolab Reference: 182561 Revision No: R00

Page | 1 of 6

Client Reference: Heathcote Sutherland

Misc Inorg - Soil			
Our Reference		182561-1	182561-2
Your Reference	UNITS	S1	S2
Depth		0.5-1	1.5-2
Date Sampled		15/12/2017	15/12/2017
Type of sample		Soil	Soil
Date prepared	-	22/12/2017	22/12/2017
Date analysed	-	22/12/2017	22/12/2017
pH 1:5 soil:water	pH Units	6.7	4.7
Chloride, Cl 1:5 soil:water	mg/kg	160	80
Sulphate, SO4 1:5 soil:water	mg/kg	330	<10
Resistivity in soil*	ohm m	34	200

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Alternatively determined by colourimetry/turbidity using Discrete Analyer.

Client Reference: Heathcote Sutherland

QUALITY CONTROL: Misc Inorg - Soil			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/12/2017	[NT]		[NT]	[NT]	22/12/2017	
Date analysed	-			22/12/2017	[NT]		[NT]	[NT]	22/12/2017	
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102	
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	88	
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	112	
Resistivity in soil*	ohm m	1	Inorg-002	<1	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]

Client Reference: Heathcote Sutherland

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Noter Quidelings recommend that Thermotelerant Coliferm Faceal Entergaasi, & F. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

APPENDIX G

Laboratory Test Results for Atterberg Limit Tests

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Testing

Date of Issue:

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

NATA

NATA Accredited Laboratory Number: 679 Report No: SYD1703031

This report replaces all previous issues of report no 'SYD1703031' Accredited for compliance with ISO / IEC 17025 -

Approved Signatory: D.P Brooke (Sydney Laboratory Manager)

16/01/2018

Issue No: 1

Aggregate/Soil Test Report

Client:

Soilsrock Engine	eering Pty Ltd
5/110 Oaks Ave	
Dee Why NSW	2099

2125759

Project:

Sample Details

GHD Sample No
Date Sampled
Sampled By
Location
BH / TP No.
Depth (m)
Soil Description

SYD17-0601-01 20/12/2017 Sampled By Client 1 - 21 Dyllwnnia Grove, Heathcote NSW BH7 1.0 - 1.5 CLAY

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	78	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	26	
Plasticity Index (%)	AS 1289.3.3.1	52	
Date Tested		15/01/2018	

Comments

N/A

Sydney Laboratory Unit 5/43 Herbert St Artarmon NSW 2064 email: artarmon@ghd.com.au web: www.ghd.com.au/ghdgeotechnics Tel: (02) 9462 4860 Fax:(02) 9462 4710

Testing

Date of Issue:

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

NATA

NATA Accredited Laboratory Number: 679 Report No: SYD1703032

This report replaces all previous issues of report no 'SYD1703032' Accredited for compliance with ISO / IEC 17025 -

Approved Signatory: D.P Brooke (Sydney Laboratory Manager)

16/01/2018

Issue No: 1

Aggregate/Soil Test Report

Client:

Soilsrock Engine	eering Pty Ltd
5/110 Oaks Ave	
Dee Why NSW	2099

2125759

Project:

Sample Details

GHD Sample No
Date Sampled
Sampled By
Location
BH / TP No.
Depth (m)
Soil Description

SYD17-0601-02 20/12/2017 Sampled By Client 1 - 21 Dyllwnnia Grove, Heathcote NSW BH10 1.0 - 1.5 CLAY

Test Results

Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	Not Tested	
Mould Length (mm)		0	
Crumbling		No	
Curling		No	
Cracking		No	
Liquid Limit (%)	AS 1289.3.1.1	80	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	23	
Plasticity Index (%)	AS 1289.3.3.1	57	
Date Tested		15/01/2018	

Comments

N/A

APPENDIX H

Site Photographs

5.2 M	CLIENT:	FUZORTINN PTY LTD	PAGE:	1 of 1
	PROJECT:	HEATHCOTE HALL - DETAILED GEOTECHNICAL SITE INVESTIGATION	DATE RECORD:	15/12/2017
	LOCATION:	1 - 21 DILLWYNNIA GROVE, HEATHCOTE NSW 2233	LOG GED BY:	H.C
	DATE:	5/01/2018	CHECKED BY:	J.C
and the second second	PROJECT NO.:	SRE/275/HC/17		

SITE PHOTOGRAPHS

Photo 1 - North West view of the site - corner of Dylwynnia grove with Tecoma Street.

Photo 3 - North view to Borehole BH07 location - area of proposed townhouses construction located at west of the site.

Photo 2 - North view to Borehole BH10 location - area of the proposed apartment building construction.

Photo 4 - South view to the Borehole BH12 location - area of the proposed townhouses construction located a East of the site.

Photo 5 - South view to site boundary adjacent to Dillwynnia Grove, a small hill slopes down from site to road. SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 8

Photo 6 - North view to borehole location BH9.

NORTHROP

lic Mechanical Structural Electrical Environmental Civil Hydraulic Mechanical Structural Environm ural Electrical Environmental Civil Hydraulic Mechanical Structural Electrical Environmental Civ Vironmental Civil Hydraulic Mechanical Structural Electrical Environmental Civil Hydraulic Mech

> Proposed Residential Development and Restoration of Heathcote Hall

STORMWATER MANAGEMENT REPORT DEVELOPMENT APPLICATION SUBMISSION

Prepared for Fuzortinn Pty Ltd

16th of Feb 2018

Reference: S151903-CR01-D

Disclaimer

This report has been prepared on behalf of and for the exclusive use of Fuzortinn Pty Ltd, and is subject to and issued in accordance with the agreement between Fuzortinn Pty Ltd and Northrop Consulting Engineers. Northrop Consulting Engineers accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. Copying this report without the permission of Fuzortinn Pty Ltd and Northrop Consulting Engineers is not permitted.

151903 – Heathcote Hall Stormwater Management Report

Rev	Description	Prepared by	Issue Date
А	Draft – Issued for Review	RM	07.04.2017
В	Final – Issued for Development Application	RM	12.04.2017
С	Final – Issued for Development Application	DBA	07.12.2017
D	Final – Issued for Development Application	GC	16.02.2018

Table of Contents

1.	Introduction	5
	Existing Site Description	5
	Proposed Development	6
2.	Concept Stormwater Management Plan	6
	Stormwater Quantity Management	6
	Stormwater Quality Management	9
	Construction phase	9
	MUSIC Modelling	10
	Proposed Stormwater Treatment Train	12
	Maintenance	12
	Conclusion	12
3.	Appendices	13
	Appendix A- Maintenance schedule	13
	Appendix B- Drains Results	14

1. Introduction

Environme

Electrical

Structural

Civil Hydraulic Mechanical

Environmental

Electrical

Structural

Environmental

Electrical

Hydraulic Mechanical Structural

Civil Mechanical

Electrical Environmental Civil Hydraulic

Environmental

Electrical

Structural

Mechanical

Hydraulic

Environmental

rica

Civil Hydraulic Mechanical Structural

Structural

Civil Hydraulic Mechanical

Environmental Civil Hydrau

tural Mechanical Structural Electrical Environmental Civil Hydraulic Mechanical Electrical Environmental Civil Hydraulic Mechanical Electrical

Northrop Consulting Engineers (Northrop) have been engaged by Fuzortinn Pty Ltd to prepare civil engineering and stormwater documentation to support a Development Application (DA) submission to Sutherland Shire Council (Council) for the proposed development at 1-21 Dillwynnia Grove, Heathcote. The proposed development will involve the construction of townhouses and apartments, a basement car park and associated infrastructure and service works as well as the restoration of Heathcote Hall and its surrounding gardens.

This report outlines the stormwater management strategy for runoff from the proposed development and has been developed in accordance with Sutherland Shire Council's 2015 Development Control Plan, Chapter 38 Stormwater and Groundwater Management.

This report should be read in conjunction with Northrop's Civil DA drawing set dated the 16th of February 2017.

Existing Site Description

The address of the subject site is 1-21 Dillwynnia Grove, Heathcote, Lot 1 and Lot 2 in DP 725184. The site is wholly located within the Sutherland Shire Council Local Government Area (LGA). Figure 1 below shows the location and extents of the site.

Figure 1 – Site location and extents.

The site is generally rectangular in shape and covers an area of approximately 17,470 m². The site is enclosed by Boronia Grove, Tecoma Street and Dillwynnia Grove on its Northern, Eastern and Southern Boundaries respectively. The site is bounded to the west by existing houses.

Proposed Development

The proposed development will involve clearing and excavation in the northern and western portions of the site. The demolition works will be followed by the construction of two levels of basement car parking and residential dwellings above. Please refer to the architectural drawings prepared by Ink Architects Pty Ltd for more details.

The heritage building and surrounding grounds are to be restored to their original condition, please refer to the landscape architectural plans and heritage consultant report for details.

2. Concept Stormwater Management Plan

This section of the report will outline the stormwater management strategy for the proposed development. The strategy has been developed in accordance with Chapter 38 of the 2015 Sutherland Council Development Control Plan: Stormwater and Groundwater management, Sutherland Shire Specification Stormwater management 2009, and Office of environment and heritage "guidelines for developments adjoining land managed by the Office of Environment and heritage" 2013.

The two main objectives are to:

- Capture and manage stormwater runoff generated from the proposed development and to safely discharge the stormwater to ensure that the peak site discharge (PSD) under proposed conditions does not exceed flows generated under pre-developed conditions.
- Appropriately manage gross pollutants and nutrient discharge from the site to minimise the impact on ecological heath of receiving waterways. This will be achieved by reducing pollutant loads by the percentages specified by Sutherland Shire Council.

Stormwater Quantity Management

The proposed development will utilise three On Site Detention (OSD) tanks to attenuate the peak stormwater discharge from the site. These tanks will be located in the North East and South West corners of the site. The DRAINS software package has been used to model and size the hydraulic behavior of these tanks.

Through discussion with council it has been determined that the heritage site has no requirement for OSD and that post developed flows are to match pre developed flows. As such we have allowed to pick up any overland surface flows that would cause a nuisance to the remaining site in swales located at the perimeter of the heritage zone, and then discharge these independently of the OSD system.

The model has been prepared to assess the 50%, 10%, 5% and 1% Annual Exceedance Probability (AEP) rainfall events (2, 10, 20 and 100 year ARI).

The DRAINS model has been built to assess both the predevelopment conditions as well as the post development conditions with OSD tanks.

The modelling input parameters adopted for the pre-developed model are as described:

- ILSAX Hydrologic routing method
- Soil Type 3
- Antecedent Moisture Conditions 3
- Paved Area Depression Storage 1 mm
- Supplementary Area Depression Storage 3 mm
- Grassed Area Depression Storage 5 mm.

- Roughness Factor 0.04 Pervious, 0.013 Impervious
- IFD Data obtained from the Bureau of Meteorology for Heathcote

The existing site comprises of three catchments, the extent and location of these catchments is shown below in **Figure 3**. The proposed post development catchments are shown in **Figure 4**, details of the proposed catchments and their areas can be found in the Northrop DA drawing package on sheet C04.91 and C04.92.

Figure 3 - Extent and location of the pre-developed site catchments.

Figure 4 – The extent and location of the post-developed site catchments.

The catchment shown above in **Figure 4** labelled "Heritage Restoration zone" has been excluded from DRAINS and MUSIC modelling. This is due to the need to restore the area to its original conditions. Hence, it is not reasonably possible to pick up this catchment without new stormwater infrastructure such as pits and swales being constructed in this zone which would impact the heritage value of the site. Where reasonably possible the runoff from the heritage zone has been accounted for in the catchment plans for stormwater modelling to ensure no flows impact on the new works.

For the North west catchment there is currently no stormwater infrastructure within Baronia grove and as a result the catchments has been broken up to provide multiple discharge point through the use of RHS to roll kerb. Each connection has been provided with a minimum spacing of 15m and maximum flow of 15 L/s in the 10% AEP event

The Results of the DRAINS model are presented below in Table 1.

Table	1 – 1	Hvdrold	oaic/Hy	/draulic	Modellina	Results	for the site.
Tubic		- yai ok	gioniy	aruuno	mouching	Results	ior the site.

		PEAK SITE DISCHARGE (m3/s)														
		50% AEP-2 y	/ear	10% AEP -10	year	5% AEP- 20	уеаг	1% AEP - 100 year								
CATCHMENT	POINT OF DISCHAGRE	PRE DEVELOPMENT	POST DEVELOPMENT	PRE DEVELOPMENT	POST DEVELOPMENT	PRE DEVELOPMENT	POST DEVELOPMENT	PRE DEVELOPMENT	POST DEVELOPMENT							
NORTH WEST	TO GUTTER	0.076	0.047	0.119	0.068	0.140	0.079	0.173	0.095							
NORTH EAST	TO EXISTING STORMWATER NETWORK	0.065 0.060		0.139	0.132	0.178	0.153	0.258	0.257							
SOUTH WEST	TO EXISTING STORMWATER NETWORK	0.197	0.177	0.307	0.269	0.360	0.332	0.445	0.415							

The results of **Table 1** above show that the post developed site discharge in each of the three catchments can be reduced to equal or less than the pre developed conditions for all stormw events. This has been achieved by using OSD tanks (2x total) located at the North East and South West discharge points to attenuate flows being discharged and maximizing the pervious area across the site.

For details of the of the size and location of the proposed OSD tanks refer to the Northrop Civil DA drawing package, in particular sheets:

- Stormwater Management Plan, C4.01
- OSD Detail Sheets, C4.61-C4.82

Stormwater Quality Management

Construction phase

During the bulk earthworks and construction of the proposed development, sediment and erosion control facilities will be designed and constructed/installed in accordance with Council's specification and with the requirements of the publication "Managing Urban Stormwater – Soils and Construction" (Also commonly known as the 'Blue Book').

A sediment and erosion control plan has been prepared and is illustrated in the civil DA drawings (Refer to sheet C2.01). This plan illustrates the strategies proposed to prevent excessive pollutant loads being exported from the site in runoff during constructions.

The plan incorporates the use of diversion bunds with hay bale water filters, sediment fences and sandbags, and temporary sediment basins.

MUSIC Modelling

The MUSIC software package (version 6.3.0) was used to model the quality of the stormwater discharged from the site, and to develop and size a stormwater treatment train for the proposed development. The model has been developed to conform to the requirements described in the *NSW Music Modelling Guidelines (2015)*.

As previously discussed the area of the Heritage Restoration Zone that cannot be collected by reasonable means or alterations to the heritage plans has been excluded. The proposed plan captures and treats as much of the runoff from the Heritage Zone as can reasonably expected to be collected and treated within the developable area.

The proposed treatment train consists of:

- 55m Vegetated Swale.
- 9 x Enviropod Pit Inserts.
- 3 x 690mm PSorb Stormwater 360 Stormfilter Cartridges.
- 5kL Rainwater Tank.

The results from the MUSIC model of the developed site with the proposed stormwater conditions with the described treatment devices are presented below in **Table 2**

Table 2 -	MUSIC Modelling	Results of the	Heathcote Hall	Area under P	Proposed Co	onditions with	Treatment

Pollutants	% Reduction Target	% Reduction
Gross Pollutants (GP)	NA	99.4
Total Suspended Solids (TSS)	80	86.3
Total Phosphorous (TP)	40	63.7
Total Nitrogen (TN)	40	40

A screen shot of the MUSIC model and the results for the proposed developments are shown below in **Figure 5**.

Figure 5 – Screenshot of Heathcote Hall Music model with results.

The results in **Table 2** reveal that the implementation of the proposed treatment train can effectively capture and remove a sufficient amount of pollutants from the site to achieve the targets as set by council.

Electrical Environmental Civil Hydraulic Mechanical Structural E

Environme

Structural Electrical

Civil Hydraulic Mechanical

Environmental

Electrical

Structural

Hydraulic Mechanical Structural

Civil Mechanical

Electrical Environmental

Civil Hydraulic

Environmental

Electrical

Structural

Hydraulic Mechanical

rica

Environmental Civil Hydraulic Mechanical Structural

Proposed Stormwater Treatment Train

In order to achieve the reduction targets specified, the following treatment devices are required as part of the treatment train:

Trash Screens/Stormwater360 Enviropod 200 inserts

A total of 9 Stormfilter360 Enviropod inserts will be used as pre-treatment of stormwater runoff to capture litter and coarse sediment from site runoff.

690mm PSorb Stormwater 360 Stormfilter Cartridges.

3 cartridges will be used to purify stormwater runoff, 2 cartridges will be located within the north eastern OSD tank and 1 cartridge will be located within the south western OSD tank.

Rainwater tank

A 5kL rainwater tank will be implemented to capture stormwater runoff generated off the roof of the buildings. The collected rainwater will be used for irrigation of the landscaped areas across the site. The rainwater tank structure will be incorporated as part of the south western OSD tank. Overflows from the rainwater tank would surface into the OSD and then discharge into Council's stormwater infrastructure.

Maintenance

Please refer to appendix A below for maintenance schedule

Conclusion

Northrop Consulting Engineers have been engaged by Fuzortinn Pty Ltd to prepare civil engineering and stormwater documentation in support of a Development Application submission to Sutherland Shire Council for the proposed development at 1-21 Dillwynnia Grove, Heathcote.

A stormwater management strategy has been developed in accordance with Chapter 38 of Council's DCP. The stormwater management strategy will include the implementation of on-site detention tanks, rainwater harvesting tanks, Enviropod pit inserts, grassed swales and landscaped areas.

Concept modelling on the effectiveness of the above stormwater treatment devices on the management of stormwater across the site has been undertaken using the DRAINS and MUSIC software packages. The modelling results have demonstrated that the above treatment devices are effective at reducing peak discharge rates and pollutant loads from the proposed site in accordance with Council's requirements.

Northrop are satisfied that stormwater runoff generated across the proposed development can be appropriately managed in accordance with Chapter 38 of the 2015 Sutherland Council Development Control Plan: Stormwater and Groundwater management, Sutherland Shire Specification Stormwater management 2009, and Office of environment and heritage "guidelines for developments adjoining land managed by the Office of Environment and heritage" 2013. The proposed stormwater management strategy can effectively manage stormwater runoff to ensure that under proposed conditions, the development will not result in an increase in pollutants or peak stormwater flows and will not result in any negative impacts to receiving water ways or downstream infrastructure.

3. Appendices

Appendix A- Maintenance schedule

Environmental Civil Hydraulic Mechanical Structural Electrical Environmental Civil Hydraulic Mechanical Electrical Environmental Civil Hydraulic Mechanical Structural Electrical Environmental Civil Hydraulic Mechanical Electrical Environmental Civil Hydraulic Mechanical Electrical stural Mechanical Structural Electrical Environmental Civil Hydraulic Mechanical Electrical Environmental Civil Hydraulic Mechanical Structural Electrical Environmental Civil Hydraulic Hydraulio Mechanical Structural rica

STORMWATER DRAINAGE SYSTEM MONITORING AND MAINTENANCE SCHEDULE GENERAL OPERATION

Site: 1-21 Dillwynnia Grove, Heathcote

Owner: _____

Commencement Date:_____

General Notes:

- 1- Maintenance is to be carried out with regard to relevant occupational health and safety guidelines and standards.
- 2- Initial monitoring and inspections of the stormwater system after commissioning are to be carried out every 3 months for the first year of operation with the amount and type of debris noted and recorded. This information shall be used to determine the modification of the frequency of inspections if required.
- **3-** The frequency of inspections shown in the stormwater maintenance schedule are the maximum periods. Inspection frequencies may be reduced upon completion of the initial monitoring and inspection program as noted in note 2.
- 4- Blank copies of the maintenance schedule are to be made and filled out during each subsequent inspection with the details kept on site for future reference.

Designer Signature anthan 16.02.2018 Date

Inspected by: Date of Inspection:

Next Inspection:

HEATHCOTE HALL

Stormwater Maintenance Schedule

Prepared on 08.12.15

Items to be Inspected	Frequency	Performed by	Inspe	ected	Maintenance Needed		Maintenance Procedure					
			Yes	No	Yes	No						
General	•											
	Four Monthly/	Owner /					Remove grate and inspect internal walls and base repair where required Remove any collected sediment debris litter and vegetation (e.g. Vacum/eductor truck)					
Stormwater surface inlet and junction pits	After Major	Maintenance					Inspect and ensure grate is clear of sediment debits litter and vegetation. Ensure flush placement of grate on refitment					
	Storm	Contractor					האסיטי בווה סופרים קיבוס הי סופרי טי סיפרווסות, בשווס, וונסי גוופי יפטיגנעוניי בווספרי הפור אומיירים קיבוס לו יסוגווניות					
General inspection of complete stormwater drainage		Owner /										
system (that's visible)	Bi-annually	Maintenance					Inspect all drainage structures noting any dilapidation, carrry out required repairs.					
		Contractor										
Rainwater Tanks	•											
		Owner /										
First Flush Device	6 Monthly	Maintenance					Inspect first flush device to ensure correct operation. Remove accumulated litter & debris. If device is not functioning properly repair or replace.					
		Contractor										
		Owner /					Check for evidence of access by animals, birds or insects including the presence of mosquito larvae. If present, identify access point and close. If evidence of algal					
Internal Inspection	6 Monthly	Maintenance					growth find and close points of light entry.					
		Contractor					2					
T 1 1 1 1		Owner /										
Tank and tank roof	6 Monthly	Maintenance					Check structural inegrity of tank including root and access covers. Any dilapidation including holes or gaps are to be noted and repaired.					
		Contractor										
On-Site Detention Tank / Discharge Control Pits												
	Six Monthly/	Owner /										
Trash Screen	After Major	Maintenance					Inspect trash screen to ensure correct operation. Remove accumulated litter & debris. If device is not functioning properly repair or replace.					
	Storm	Contractor										
	Six Monthly/	Owner /					Inspect orifice plate to ensure correct operation. Check orifice diameter size is correct and no damage is present to orifice edge. Check orifice plate is securely					
Orifice Plate	After Major	Maintenance					fastened to wall with no gaps present between plate and face of wall. If gaps are present fill with sealant or mortar to provide water tight seal.					
	Storm	Contractor					2-F - F					
	Six Monthly/	Owner /										
Weep Holes in base of sump	After Major	Maintenance					Inspect weep holes in base of sump. Ensure weep holes are able to drain effectively and remove accumulated sediment and debris if present.					
	Storm	Contractor										
Tools on the stands	0.14	Owner /										
Tank and tank root	6 Monthly	Maintenance					Check structural inegrity of tank including root and access covers. Any dilapidation including noies or gaps are to be noted and repaired.					
Deimony Tractory and		Contractor										
Primary Treatment												
	Refer	Maintenance /										
Stormwater 360 Enviropod Pit Inserts (or equivalent)	Manufacturers	Specialised					Refer to manufacturers operation and maintenance manual.					
	Manual	Contractor										
Secondary Treatment												
	Reter	Maintenance /										
Stormwater 360 Stormfilter Cartridges (or equivalent)	Manufacturers	Specialised					Refer to manufacturers operation and maintenance manual.					
	Manual	Contractor										

ILSAX CALCULATION SUMMARY SHEET

DRAINS re	sults prepa	red from V	ersion 2018.0	1			Fatio	. C-1-1																													
Soil Type		User to en	iter				Paved	0.786 ha	(22.5%)																												
AMC		User to en	iter			Sup	Grassed Total Area	2.708 ha 3.495 ha	(0%)																												
LOCATIO	N AND LAN	ID-USE			TIME AND			INLET DESIGN PIPE SYSTEM DESIGN									PIT RESULTS																				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	31a 3	31b	32	33	34	35	36
Design AEP	Pit Name	Sub- Catchmer Area	nt Land- Use	Percent- age	Constant Flow Time	Kinema Forr Length	atic Wave or mula Param Slope	r Friends ieters Roughness	Total Time tc	Peak Sub- Catchment Flowrate	Origin of Approach	Overflow Flowrate	s Approad Flow Width	hing Pit Depth x Velocity	Inlet Family	Inlet Size	Total Approach Flow	Overfl Bypass Flow	ow Leavin Flow Width	g Pit Depth x Velocity	Peak Flow in Pipe	Reach Length	Pipe Slope	Pipe Diameter	U/S Pipe Invert Level	D/S Pipe Invert Level	U/S HGL in Pipe	D/S HGL in Pipe	Pipe Flow Velocity	Pressure Change Coeff.	QUDM QU Chart Cl No. Ra	iDM N hart S itios El	Water Surface	Surface Level	Free- board	Pit R Name	temarks
AR&R	NE4	0.1029	Paved	0	0	0	0	0	0	*worst storm 0.025	TIOWS	(1175)	(11)	(1178)	RSG	RSG 900x9	0.025	0	0	0	0.026	24.4	1	225	211.67	211.426	211.76	211.578	1.73	2.33	A1-4 [A2-3]7, Vo	52/(2gE 2	211.82	212.5	0.68	NE4	
AR&R	NE4	0.1029	Supp. Grassed Paved Grassed	0 100 <	0 5	0 30 as above	0 2.1	0 0.2	18.96 0 13.71	0.043							0.043	0.001	0.4	0	0.039						212.506	212.42	0.97	2.33	A1-4 [A2-3]7, Vo	»2/(2gE 2	212.56	212.5	0	NE4	
AR&R	NE 3	0.0773	Paved Supp.	0	0	0	0	0	0	0.016					RSG	RSG 900x9	0.016	0.003	1.74	0.01	0.036	18.21	1	225	211.4	211.218	211.494	211.372	2.3	1.17	A1-5 [A2-4] Qg/	Qo=0.4 2	211.58	212.85	1.27	NE 3	
AR&R	NE 3	0.0773	Grassed Paved Grassed	100	5	58 as above	2.1	0.2	23.94 0 21.05	0.029							0.029	0.009	5.38	0.02	0.053						212.342	212.158	1.34	1.17	A1-5 [A2-4], Qg/	Qo=0.4 2	212.42	212.85	0.43	NE 3	
AR&R	NE 2	0.099	Paved Supp.	0	0	0	0	0	0	0.021	NE 3	0.003	1.74	0.01	RSG	RSG 900x9	0.024	0	0	0	0.059	55.36	5.73	225	211.1	207.93	211.197	209.02	3.65	2.73	H-O'L p=0.4	15, S/D 2	211.33	212.75	1.42	NE 2	
AR&R	NE 2	0.099	Grassed Paved Grassed	100 <	5	58 as above	2.1	0.2	23.94 0 21.05	0.037	NE 3	0.009	5.38	0.02			0.046	0	0	0	0.089						211.482	209.436	2.24	2.73	H-O'L p=0.4	15, S/D 2	212.16	212.75	0.59	NE 2	
AR&R	NE 1		Paved Supp. Grassed								NE4 NE 2	0 0	0 0	0 0	Sutherlan	d Sutherland	0	0	0	0	0.133	6.6	1	375	207.846	207.78	208.969	208.933	1.21	0.69	H-O'L p=0.0	0, S/D 2	209.02	209.85	0.83	NE 1	
AR&R	NE 1		Paved Grassed	<		as above		>			NE4 NE 2	0.001 0	0.4 0	0			0.001	0	0	0	0.258						209.243	209.103	2.34	0.69	H-O'L p=0.0	10, S/D 2	209.44	209.85	0.41	NE 1	
AR&R	EX 1		Paved Supp. Grassed								NE 1	0	0	0	NSW RT	A SA1	0	0	0	0	0.134	4	3	450	207.76	207.64	208.933	208.92	0.84	0	A1-5 [A2-4], Qg/	Qo=0.(2	208.93	209.13	0.2	EX 1	
AR&R	EX 1		Paved Grassed	<		as above		>			NE 1	0	0	0			0	0	0	0	0.258						209.103	209.07	1.62	0	A1-5 [A2-4] Qg/	Qo=0.(1	209.1	209.13	0.03	EX 1	
AR&R	SW3	0.058	Paved Supp. Grassed	7 0 93	5 0 5				5	0.026					RSG	RSG 900x9	0.026	0	0	0	0.023	27.2	8.53	225	210.87	208.55	210.933	208.809	2.47	5.54	A1-4 [A2-3]0, Vo	2/(2g[2	211.05	211.7	0.65	SW3	
AR&R	SW3	0.058	Paved Grassed	<		as above		>	5	0.037	0.440						0.037	0	0	0	0.031				000.5	005 7	210.944	208.968	2.7	5.54	A1-4 [A2-3]0, Vo	.2/(2g[2	211.12	211.7	0.58	SW3	
ARAR	SW2	0.1419	Supp. Grassed	0 93	5 0 5	ar above			5	0.063	SW3	0	0	0	RSG	RSG 900x	0.063	0 004	0.36	0.03	0.069	16.3	17.18	300	208.5	205.7	208.597	205.797	3.49	4.35	A1-4 [A2-3]U, VC	2/(2gL 2	208.81	209.45	0.64	SW2	
AR&R	SW1	0.1410	Grassed			13 12070			5	0.001	SW2	0	0	0	NSW Dec	ot RM7	0.001	0.004	0.00	0.00	0.069	10.2	20.59	375	205.6	203.5	205.689	204.19	3.42	1.09	1 (A2-20 & A Qa/	Qo=0.(;	205.78	206.6	0.82	SW1	
AR&R	SW1		Supp. Grassed Paved	<		as above		>			SW2	0.004	0.36	0.03			0.004				0.093						205.704	204.34	3.73	1.09	I [A2-20 & A Qg/	Qo=0.(\$	205.82	206.6	0.78	SW1	
AR&R	SW4	0.058	Grassed Paved	5	0	50	10	0.012	2.2	0.026					NSW Dep	ot. RM7	0.026	0.006	0.46	0.03	0.131	8.5	1	375	202.235	202.15	202.878	202.83	1.19	0.99	9 [A2-6 & A, Qg/	Qo=0.1 \$	202.95	205	2.05	SW4	
AR&R	SW4	0.058	Supp. Grassed Paved	0 95 <	0 0	-1 50 as above	-1 10	-1 0.02	2.98	0.037							0.037	0.012	0.65	0.05	0.204						203.094	202.98	1.85	0.99	9 [A2-6 & A, Qg/	Qo=0.1 1	203.27	205	1.73	SW4	
AR&R	OSD 2	0.348	Paved	40	5				5	0.159							0.159																			OSD 2	
AR&R	OSD 2	0.348	Supp. Grassed Paved Grassed	60 <	5	as above		>	5 5 5	0.229							0.229																			OSD 2	
AR&R	OSD 1	0.5669	Paved Supp.	80 0	0	105 0	1	0.013	5.47	0.233							0.233																			OSD 1	
AR&R	OSD 1	0.5669	Grassed Paved Grassed	<	0	105 as above	1	0.2	28.18 3.63 18.7	0.336							0.336																			OSD 1	
AR&R	flow Charr	iber 2	Paved Supp.														0				0.121	1.5	1	375	202.3	202.285	202.956	202.949	1.09						Overf	low Chambe	ər 2
AR&R	flow Charr	iber 2	Grassed Paved Grassed	<		as above		>									0				0.186						203.283	203.266	1.69						Overf	low Chambe	ər 2
AR&R	flow Charr	iber 1	Paved Supp.														0				0.075	4.3	1.16	300	207.9	207.85	209.044	209.02	1.06						Overf	low Chambe	<i>a</i> r 1
AR&R	flow Cham	iber 1	Paved	۰۰۰۰۰		as above		>									0				0.171						209.57	209.436	2.43						Overf	low Chambe	ər 1

NOTES

This sheet presents results from a pipe system model using ILSAX, the rational method, extended rational method (ERM), or initial loss - continuing loss (IL-CL) model implemented in the DRAINS program, (www.watercom.com.au) involving considerable calculations with multiple rainfall patterns, and complex hydraulic computations. Therefore, unlike older rational method calculation sheets, this sheet does not portray hand calculations. It presents the key model inputs and outputs of interest to reviewers.

Depending on inputs, the table may show results for a minor storm, a major storm, or both. There may be multiple rows for up to three overflow routes coming to a pit. You can edit headings or delete columns or rows.

The contents of each column are discussed below

Column 1: Design annual exceedance probability (AEP); values for minor storms, major storms or both may be displayed. Numerical values are not available for the rational method, but users can enter these. Column 2: Pit Name from DRAINS (The connecting sub-catchment, downstream pipe and overflow route are assumed to have similar ranses, so they do not need to be entered in the table.) Column 3: Sub-Catchment Area (ha)

Column 3: Sub-Cathment Area (ia) Column 3: Sub-Cathment Area (ia) Column 4: Sub-Cathment Area (ia) Column 5: Percentagian of percent supplementary and grassed areas for different tows) for LSAX, impervious area for the rational method and EPM, or equivalent impervious areas for the IL-CL model. Column 5: Percentagian of percent supplementary and grassed areas for LSAX, or impervious areas for the rational method and EPM, or equivalent impervious areas for the IL-CL model. Column 5: Percentagian of percent supplementary and grassed areas for the IL-CL model. Column 6: Control EPM or equivalent impervious areas (EAA) and remaining areas for the IL-CL model. Column 8: Roughnesses of paved, supplementary and grassed areas for path segments (in) for LSAX, or impervious and impervious areas for the rational method and EPM, or equivalent impervious areas (EAA) and remaining areas for the IL-CL model. Column 8: Roughnesses of paved, supplementary and grassed area for path segments (in) for LSAX, or impervious and impervious areas for the rational method and EPM, or equivalent impervious areas (EAA) and remaining areas for the IL-CL model. Column 9: Roughnesses of paved, supplementary and grassed area for path segments (i) for LSAX, or impervious and impervious areas for the rational method and EPM, or equivalent impervious areas (EAA) and remaining areas for the IL-CL model. Column 9: Roughnesses of paved, supplementary and grassed area for path segments (i) for LSAX, or impervious and parvious areas for the rational method and EPM, or equivalent impervious areas (EIAa) and remaining areas for the IL-CL model. Column 9: Roughnesses of paved, supplementary and grassed area for path segments (i) for LSAX, or impervious and parvious areas for the rational method and EPM, or equivalent impervious areas (EIAa) and remaining areas for the IL-CL model. Column 11: Peaks-U-CL model. Column 12: Origin d'Overlaws, the names of any pito or nodes from which overflows come to the path Column 12: Origin d'Overlaws, the

- nor outputes for the rational method.)
Column 14: Approach Flow Well(in (m) - not outputted for the rational method.
Column 15: Approach Flow Depth x Velocity (m²/s) - not outputted for the rational method.
Column 15: Intel Family, in the DRAINS classification.
Column 17: Inlet Size, in the DRAINS classification.

Column 18: Total Approach Flow (m3/s), local sub-catchment runoff plus overflows directed to the pit.

Column 19: Bypass Flow (m²)s, the constraint was made to plot of states capabily or vertilizing of the pipe system Column 20: Overflow Widh (m) just downsteam of the pit - not outputted for the rational method; respect the DRAINS model for this information. Column 20: Overflow Roadb Eight V Alcolotty (m²) just downsteam of the pit - not outputted for the rational method; respect the DRAINS model for this information.

Column 21a: Baseflow or Direct Inflow Peak (m³/s), if present in the model; otherwise this column does not appear.

Column 22: Flow in Pipe (m³/s).

Column 23: Pipe Length (mm). Column 24: Pipe Slope (%). Column 25: Pipe Diameter (mm) or Box Dimensions (m).

Colum 22: Pipe Diameter (rmm) or Box Dimensions (m). Colum 22: Pipe Diameter (rmm) or Box Dimensions (m). Colum 23: Downsteam Pipe Hydraulic Grade Line Level (makthe pipe) (m AHD). Colum 32: Downsteam Pipe Hydraulic Grade Line Level (m AHD). Colum 31: PLP Dessure Change Coefficient, the Ku value applying to the main line through the plt. Colum 31: PLP Dessure Change Coefficient, the Ku value applying to the main line through the plt. Colum 31: PLP Dessure Change Coefficient, the CUDM method for determining Ku is applied, the number of the Chart in QUDM (2008) that is used to determine pit pressure change K factors is displayed. If this is given as H-O1: the equation is a paper by Hare and OLogithi and used. Colum 31: Charlos used to define at values from the appropriate QUDM Charl, field AUDM method is applied. Colum 32: Water Succed (m), the difference between the levels in the two previous columns. Column 35: PLP Contexed (m), the difference between the levels in the two previous columns. Column 35: PLM Name (repeated).

WASTE MANAGEMENT PLAN

PREPARED FOR Ink Architects

Residential Development

1-21 Dillwynnia Grove Heathcote NSW

20/04/2017

EDDY SAIDI Ph: 1800 025 073

The information contained in this document produced by Elephants Foot Recycling Solutions is solely for the use of the client identified on the cover sheet for the purpose for which it has been prepared for. Elephants Foot Recycling Solutions undertakes no duty, nor accepts any responsibility to any third party who may rely upon this document. This document may not be copied or reproduced without written permission from Elephants Foot Recycling Solutions.

REVISIONS

Revision	Date	Prepared by	Reviewed by	Approved by	Remarks
А	28/02/2017	A Armstrong	N Beattie	E Saidi	DRAFT
В	20/04/2017	A Armstrong	N Beattie	E Saidi	FINAL

Authorised By:

Date:

DISTRIBUTION LIST

Recipient Name	Company	Revision
Gustavo Thiermann	Ink Architects	В

EXECUTIVE SUMMARY

This waste management plan covers the ongoing management of waste generated by the residential development located at 1-21 Dillwynnia Grove, Heathcote NSW.

Waste audit and management strategies are recommended for new developments to provide support for the building design and promote strong sustainability outcomes for the building. All recommended waste management plans will comply with council codes and any statutory requirements. The waste management plan has three key objectives:

- i. **Ensure waste is managed to reduce the amount of waste and recyclables to land fill** by assisting residents to segregate appropriate materials that can be recycled; displaying signage to remind and encourage recycling practices; and through placement of recycling and waste bins in the retail precinct to reinforce these messages.
- ii. Recover, reuse and recycle generated waste wherever possible.
- iii. **Compliance** with all relevant codes and policies.

To assist in providing clean and well-segregated waste material, it is essential that this waste management plan is integral to the overall management of the building and clearly communicated to residents and tenants.

TABLE OF CONTENTS

REVISIONS	
DISTRIBUTION LIST	2
EXECUTIVE SUMMARY	
GLOSSARY OF TERMS	6
LIST OF TABLES	7
INTRODUCTION	
SUTHERLAND SHIRE COUNCIL	
OBJECTIVES	
REQUIREMENTS	
GENERATED WASTE VOLUMES	10
CONSTRUCTION AND DEVELOPMENT WASTE	10
BUILDING MANAGER/WASTE CARETAKER	10
REPORTING	11
EDUCATION	11
RESIDENTIAL WASTE PLAN	12
BIN SUMMARY	12
WASTE MANAGEMENT	13
WASTE HANDLING	13
TEMPORARY STORAGE OF BULKY GOODS	13
OTHER WASTE STREAMS	13
COMPOSTING	13
COMMON AREAS	14
GREEN WASTE	14
WASTE ROOM AREAS	14
COLLECTION OF WASTE	14
APARTMENTS	14
GARBAGE ROOMS	15
CONSTRUCTION REQUIREMENTS	15
SIGNAGE	15
VENTILATION	15
STORM WATER PREVENTION & LITTER REDUCTION	16
ADDITIONAL INFORMATION	16
LIMITATIONS	16

USEFUL CONTACT	⁻ S	17
APPENDICES		18
APPENDIX A D	RAWING EXERPTS	18
APPENDIX A.1	ALLOCATED WASTE ROOMS	18
APPENDIX A.2	BIN HOLDING ROOM & COLLECTION AREA	19
APPENDIX B S	UTHERLAND SHIRE EQUIPMENT SPECIFICATIONS	20
APPENDIX B.1	BIN DIMENSIONS AND SPECIFICATIONS	20
APPENDIX B.2	2 SIGNAGE FOR WASTE & RECYCLING BINS	21
APPENDIX B.3	3 TYPICAL COLLECTION VEHICLE INFORMATION	22
APPENDIX C W	ASTE MANAGEMENT EQUIPMENT SPECIFICATIONS	24
APPENDIX C.1	TYPICAL BIN MOVER	24
APPENDIX C.2	2 TYPICAL WORM FARM SPECIFICATIONS	25
APPENDIX C.3	3 TYPICAL APARTMENT STYLE COMPOST BINS	26
APPENDIX C.4	ELECTRIC ORGANIC COMPOST BIN	27
APPENDIX C.5	5 TYPICAL PUBLIC PLACE WASTE BINS	28

GLOSSARY OF TERMS

TERM	DESCRIPTION
Chute	A ventilated, essentially vertical pipe passing from floor to floor of a building with openings as required to connect with hoppers and normally terminating at its lower end at the roof of the central waste room(s)
Collection Area/Point	The position or area where waste or recyclables are actually loaded onto the collection vehicle
Compactor	A Machine for compressing waste into disposable or reusable containers
Composter	A container/machine used for composting specific food scraps
Crate	A plastic box used for the collection of recyclable materials
Garbage	All domestic waste (Except recyclables and green waste)
Hopper	A fitting into which waste is placed and from which it passes into a chute or directly into a waste container. It consists of a fixed frame and hood unit (the frame) and a hinged or pivoted combined door and receiving unit
Recycling	Glass bottles and jars – PET, HDPE and PVC plastics; aluminium aerosol and steel cans; milk and juice cartons; soft drink, milk and shampoo containers; paper, cardboard, junk mail, newspapers and magazines
Green	Garden organics such as small branches, leaves and grass clippings, tree and shrub pruning, plants and flowers, and weeds
L	Litre(s)
Liquid Waste	Non-hazardous liquid waste generated by commercial premises that is supposed to be connected to sewer or collected for treatment and disposal by a liquid waste contractor (including grease trap waste)
Mobile Garbage Bin(s) (MGB)	A waste container generally constructed of plastic with wheels with a capacity in litres of 120, 240, 660, 1000 or 1100, 1500 or 2000

LIST OF TABLES

Table 1: Apartment Unit Breakdown Matrix	8
Table 2: Calculated Waste Generation1	2
Table 3: Waste Room Areas - Apartments1	4

INTRODUCTION

The following waste management plan pertains to the residential development located at 1-21 Dillwynnia Grove, Heathcote NSW. This waste management plan is an operational waste management plan and will address the phases of the completed development.

For the purpose of this report the proposed development will consist of:

- 36 x 3-bedroom townhouses segregated across 9 blocks (T1-T9);
- 21 residential units dispersed across 2 segregated apartment blocks (A & B); and
- 2 basement levels.

Table 1: Apartment Unit Breakdown Matrix

Building	# Units	% Mix
1 Bedroom	6	28.5714
2 Bedroom	15	71.4286
Total	21	

Figure 1: Site Plan

All figures and calculations are based on area schedules as advised by our client and shown on architectural drawings.

SUTHERLAND SHIRE COUNCIL

The assessment of waste volumes is an estimate only and will be influenced by the development's management and occupant's attitude to waste disposal and recycling.

The residential waste and recycling will be guided by the acceptance criteria of the Sutherland Shire Council and will be serviced by a private waste contractor.

All waste facilities and equipment are to be designed and constructed to be in compliance with the Sutherland Shire Council's *Development Control Plan 2006* and *Local Environmental Plan 2006*, Australian Standards and statutory requirements.

OBJECTIVES

- Prioritise waste minimisation measurements at the source by facilitating at the design, demolition and construction stage techniques that allow for the reuse, recycling and treatment of all forms of building waste;
- ensure development addresses waste reduction, reuse and recycling through the preparation of a waste management plan;
- encourage on-site waste management facilities that are integrated with the design of a development and enable source separation, reuse and recycling;
- enable collection service providers to efficiently collect waste and recyclables with minimum disruption and impact on the community; and
- promote the use of recyclable materials in the design, construction and operation of buildings and land use activities.

REQUIREMENTS

- A waste storage area is to be provided for all developments to store bin waste and recyclables.
- The location of waste and recycling facilities must not impact on car parking or landscaping requirements of the development.
- Developments must be designed so that bins do not need to be wheeled more than 75 metres. For housing for aged persons or persons with a disability (seniors housing), this distance should be limited to 50 metres. The bin-carting grade should be a maximum of 1:14.
- The location and design of the waste storage area must not detract from the amenity and character of the streetscape.
- Waste and recycling facilities must be designed to prevent litter and contamination of the stormwater drainage system.
- Bin storage and access requirements should take into consideration the future servicing requirements of the building.

GENERATED WASTE VOLUMES

The assessment of projected waste volumes is a calculated estimate only and will be influenced by the development's management and occupant's waste disposal and recycling practices.

CONSTRUCTION AND DEVELOPMENT WASTE

The head contractor will be responsible for removing all construction-related waste offsite in a manner that meets all authority requirements. Please refer to the separate waste management plan submitted for construction waste as part of the Development Application.

BUILDING MANAGER/WASTE CARETAKER

All waste equipment movements are to be managed by the building manager/cleaners at all times. No tenants or residents will be allowed to transport waste or recyclables from the waste room; tenants and residents will only transport their waste to the allocated bin room.

The building manager/cleaner duties include, but are not limited to, the following:

- organising, maintaining and cleaning the general and recycled waste holding areas (Frequency will depend on waste generation and will be determined based upon building operation);
- transporting of bins as required;
- organising both garbage and recycled waste pick-ups as required;
- cleaning and exchanging all bins;
- ensure site safety for residents, children, visitors, staff and contractors;
- abide by all relevant OH&S legislation, regulations, and guidelines;
- assess any manual handling risks and prepare a manual handling control plan for waste and bin transfers; and
- provide to staff/contractors equipment manuals, training, health and safety procedures, risk assessments, and PPE to control hazards associated with all waste management activities

<u>NOTE</u>: It is the responsibility of the building manager to monitor the number of bins required for the development. As waste volumes may change according to the development's management and occupants' attitudes to waste disposal and recycling, bin numbers and sizes may need to be altered to suit the building operation.

REPORTING

It is recommended that building management ensure that all waste service providers submit monthly reports on all equipment movements and weights of any waste and recycling products removed from the development. Regular reviews of servicing should take place to ensure operational and economic best practise and to assist with sustainability reporting.

EDUCATION

Building management is responsible for creating and managing the waste management education process.

Educational material encouraging correct separation of garbage and recycling items must be provided to each resident to ensure correct disposal of garbage and recycling. This should include the correct disposal process for bulky goods (old furniture, large discarded items, etc.) It is recommended that information is provided in multiple languages to support correct practises.

It is also recommended that the owners' corporation website contain information for residents to refer to regarding correct source separation. Information should include:

- recycling and garbage descriptions (Council provides comprehensive information);
- how to dispose of bulky goods and any other items that are not garbage or recycling;
- residents' obligations to WHS and building management; and

RESIDENTIAL WASTE PLAN

Sutherland Shire Council's *Development Control Plan* has been referenced to calculate the total number of bins required for the residential units. Please note that calculations are based on generic figures; waste generation rates may differ according to the residents' waste management practice.

Building/ Core	# Units	Generated Waste (L/week)	Waste	Generated Recycling (L/week)	Recycling
1 Bed Apartment	6	80	480	80	480
2 Bed Apartment	15	100	1500	100	1500
3 Bed Townhouse	36	120	4320	120	4320
TOTAL	57		6300		6300

Table 2: Calculated Waste Generation

BIN SUMMARY

The following assumptions have been taken into consideration:

- A minimum of 1 x 660L garbage MGB and 1 x 660L recycling MGB will be located in each separate waste room (4 in waste rooms in total) located on the basement level;
- residents are required to manually dispose of their garbage and recyclables directly within their corresponding waste room;
- garbage and recycling is collected twice weekly; and
- the number of bins have been rounded up for best operational outcome.

Using the assumptions stated, the required capacity and quantity of garbage and recycling bins have been calculated and tabulated respectively below:

Overall Bin Summary

Garbage:	6 x 660L MGBs collected twice weekly
Recycling:	6 x 660L MGBs collected twice weekly

Waste Room Bin Summary Breakdown

Waste Room 1:	T1, T2 & B	2 x 660L Garbage MGBs & 2 x 660L Recycling MGBs
Waste Room 2:	T3, T4 & A	2 x 660L Garbage MGBs & 2 x 660L Recycling MGBS
Waste Room 3:	T5 & T9	1 x 660L Garbage MGBs & 1 x 660L Recycling MGBs
Waste Room 4:	T6, T7 & T8	1 x 660L Garbage MGBs & 1 x 660L Recycling MGBs

Subject to the stakeholders preference/capability (and as built constraints), bin sizes and quantities may be changed. As waste volumes may change according to the development's type, bin numbers and collection frequencies may be altered to suit the building operation.

WASTE MANAGEMENT

Residents are required to manually dispose of their garbage and recyclables directly into the 660L MGBs provided within their corresponding waste room.

On collection days, the building caretaker will be responsible for transferring full 660L MGBs from each waste room to the central bin holding room for collection by a private waste contractor via a wheel-in/wheel-out arrangement from Boronia Grove.

WASTE HANDLING

Residents will be supplied with a collection area in each unit (generally in the kitchen, under bench or similar alternate area) to deposit garbage and collect recyclable material suitable for one days storage. All garbage should be bagged.

Recycling must not be bagged. It is recommended that residents use a crate or dedicated bin for collecting recyclables within the allocated residential space provided to ensure correct separation.

TEMPORARY STORAGE OF BULKY GOODS

A room or caged area should be allocated for the storage of discarded residential bulky items and should be incorporated with the waste and recycling bin store and collection room. The allocated space must be a minimum of 20m². This area must be made available close to the collection area. It is envisaged that bulky goods will be managed by the appointed waste caretaker/s. Residents will be required to liaise with building management regarding all bulky goods movements.

It is recommended that donations to charitable organisations be encouraged. Clean, sound furniture and household goods etc. are highly sought after to provide for the disadvantaged. Donations will be arranged with the assistance of the building manager/caretaker.

OTHER WASTE STREAMS

Disposal or recycling of electronic, liquid waste and home detox (paint/chemicals etc.) will be organised with the assistance of the building caretaker. These items must not be placed in waste or recycling bins due to safety and environmental factors.

Residents should be directed to Council's comprehensive website for further information.

COMPOSTING

Consideration should be given for space for composting and worm farming to be made available for all residents in a communal facility or in small private courtyards (see APPENDIX C.2 for *Typical Worm Farm Specifications*). Residents may also choose to purchase and install apartment style compost bin where practical and self-manage these systems (see APPENDIX C.3 and APPENDIX C.4 for Typical Compost Bins). Two systems have been included for consideration however there are a variety of compost systems available at hardware stores.

COMMON AREAS

The lobbies, retail amenities and circulation areas will be supplied with suitably branded waste and recycling bins, where considered appropriate. Building management will monitor use and ensure bins are exchanged and cleaned. These areas generate negligible waste however garbage and recycling receptacles should be placed in convenient locations.

Washroom facilities in retail and staff areas should be supplied with collection bins for paper towels (if used). Sanitary bins for female restroom facilities must also be arranged with an appropriate contractor.

Building management will monitor use and ensure waste bins are exchanged and cleaned.

GREEN WASTE

There will be green waste generated by the buildings landscaped areas. Any green waste will be collected and removed from site by the maintenance contractor during scheduled or arranged servicing of these areas.

WASTE ROOM AREAS

The areas allocated for the separate waste rooms, bin holding room and bulky goods storage are detailed in Table. 3 below. The areas provided are considered suitable for purpose.

Table 3: Waste Room Areas - Apartments

Location	Waste Room Type	Allocated Area
Basement	Waste Rooms	10-20m ²
Basement	Bin Holding Room	40 m ²
Basement	Bulky Goods Storage	20 m ²

COLLECTION OF WASTE

APARTMENTS

A private waste contractor will be engaged to service all garbage and recycling MGBs on a twice weekly basis.

On collection days, the building caretaker will transfer all bins from each waste room to the bin holding room for servicing via a wheel-in/wheel-out arrangement from Boronia Grove. Once serviced, the building caretaker will return all MGBs to the allocated waste rooms.

The collection areas will need to be reviewed by a traffic consultant to confirm that these (and other trucks if required) can adequately service the site by parking on Tecoma Street. The final number of truck movements will depend on management of waste contract; final configuration of waste and recycling arrangements therefore number of bin lifts and additional irregular truck movements for hard waste. This information and supporting drawings will be provided separate to this report.

GARBAGE ROOMS

CONSTRUCTION REQUIREMENTS

The garbage room will be required to contain the following facilities to minimise odours, deter vermin, protect surrounding areas, and make it a user-friendly and safe area:

- waste room floor to be sealed with a two pack epoxy;
- waste room walls and floor surface is flat and even;
- all corners coved and sealed 100mm up, this is to eliminate build-up of dirt;
- for residential: a hot and cold water facility with mixing facility and hose cock must be provided for washing the bins;
- for retail/commercial: a cold water facility with hose cock must be provided for washing the bins;
- any waste water discharge from bin washing must be drained to sewer in accordance with the relevant water board. (Sydney Water);
- tap height of 1.6m;
- storm water access preventatives (grate);
- all walls painted with light colour and washable paint;
- equipment electric outlets to be installed 1700mm above floor levels;
- the room must be mechanically ventilated;
- light switch installed at height of 1.6m;
- waste rooms must be well lit (sensor lighting recommended);
- optional automatic odour and pest control system installed to eliminate all pest types and assist with odour reduction – this process generally takes place at building handover – building management make the decision to install;
- all personnel doors are hinged and self-closing;
- waste collection area must hold all bins bin movements should be with ease of access;
- conform to the Building Code of Australia, Australian Standards and local laws; and
- childproofing and public/operator safety shall be assessed and ensured

SIGNAGE

The building manager/caretaker is responsible for waste room signage including safety signage (see APPENDIX B.2). Appropriate signage must be prominently displayed on walls and above all bins, clearly stating what type of waste or recyclables is to be placed in the bin underneath.

VENTILATION

Waste and recycling rooms must have their own exhaust ventilation system either;

- Mechanically exhausting at a rate of 5L/m² floor area, with a minimum rate of 100L/s minimum; or
- Naturally permanent, unobstructed, and opening direct to the external air, not less than one-twentieth (1/20) of the floor area

Mechanical exhaust systems shall comply with AS1668 and not cause any inconvenience, noise or odour problem.

STORM WATER PREVENTION & LITTER REDUCTION

Building management shall be responsible for the following to minimise dispersion of site litter and prevent stormwater pollution to avoid impact to the environment and local amenity:

- promote adequate waste disposal into the bins;
- secure all bin rooms (whilst affording access to staff/contractors);
- prevent overfilling of bins, keep all bin lids closed and bungs leak-free;
- take action to prevent dumping or unauthorised use of waste areas; and
- ensure collection contractors clean-up any spillage that may occur when clearing bins

ADDITIONAL INFORMATION

Transfer of waste and all bin movements require minimal manual handling therefore the operator must assess manual handling risks and provide any relevant documentation to building management. If required, a bin-tug, trailer or tractor consultant should be contacted to provide equipment recommendations. Hitches may require installation to move multiple bins to the collection area. Council must be informed of any hitch attachments required to be installed on bins.

LIMITATIONS

The purpose of this report is to document a Waste Management Plan as part of a development application and is supplied with the following conditions:

- Drawings, estimates and information contained in this waste management plan have been prepared by analysing the information, plans and documents supplied by you and third parties including Council and government information. The assumptions based on the information contained in the WMP is outside the control of EFRS;
- the figures presented in the report are an estimate only the actual amount of waste generated will be dependent on the occupancy rate of the building/s and waste generation intensity as well as the building managements approach to educating residents and tenants regarding waste management operations and responsibilities;
- the building manager will make adjustments as required based on actual waste volumes (if waste is greater than estimated) and increase the number of bins and collections accordingly;
- the report will not be used to determine or forecast operational costs or prepare any feasibility study or to document any safety or operational procedures;
- the report has been prepared with all due care however no assurance or representation is made that the WMP reflects the actual outcome and EFRS will not be liable to you for plans or outcomes that are not suitable for your purpose, whether as a result of incorrect or unsuitable information or otherwise;
- EFRS offer no warranty or representation of accuracy or reliability of the WMP unless specifically stated;
- any manual handling equipment recommended should be provided at the recommendation of the appropriate equipment provider who will assess the correct equipment for supply;
- Design of waste management chute equipment and systems must be approved by the supplier.

Sydney Head Office 44-46 Gibson Ave Padstow NSW 2211 | PH: +612 9780 3500 | Fax: +612 9707 2588 Website: www.elephantsfoot.com.au | Email: info@elephantsfoot.com.au Offices in Victoria & Queensland – Toll Free: 1800 025 073

USEFUL CONTACTS

Elephants Foot Recycling Solutions does not warrant or make representation for goods or services provided by suppliers.

Sutherland Shire Council Customer Service

Phone: 02 9710 0333

Email: <u>ssc@ssc.nsw.gov.au</u>

SULO MGB (MGB, Public Place Bins, Tugs and Bin Hitches) Phone: 1300 364 388

CLOSED LOOP (Organic Dehydrator) Phone: 02 9339 9801

ELECTRODRIVE (Bin Mover) Phone: 1800 333 002

Email: sales@electrodrive.com.au

RUD (Public Place Bins, Recycling Bins) Phone: 07 3712 8000

Email: Info@rud.com.au

CAPITAL CITY WASTE SERVICES Phone: 02 9359 9999

REMONDIS (Private Waste Services Provider) Phone: 13 73 73

SITA ENVIRONMENTAL (Private Waste Services Provider) Phone: 13 13 35

NATIONAL ASSOCIATION OF CHARITABLE RECYCLING ORGANISATIONS INC. (NACRO)Phone: 03 9429 9884Email: information@nacro.org.au

PURIFYING SOLUTIONS (Odour Control)

Phone: 1300 636 877

Email: sales@purifyingsolutions.com.au

Elephants Foot Recycling Solutions (Chutes, Compactors and eDiverter Systems) 44 – 46 Gibson Avenue Padstow NSW 2211 Free call: 1800 025 073 Email: natalie@elephantsfoot.com.au

APPENDICES

APPENDIX A DRAWING EXERPTS

APPENDIX A.1 ALLOCATED WASTE ROOMS

ELEPHANTS FOOT WASTE COMPACTORS PTY LTD ABN 70 001 378 294 Sydney Head Office 44-46 Gibson Ave Padstow NSW 2211 | PH: +612 9780 3500 | Fax: +612 9707 2588 Website: www.elephantsfoot.com.au | Email: info@elephantsfoot.com.au Offices in Victoria & Queensland – Toll Free: 1800 025 073

18

APPENDIX A.2 BIN HOLDING ROOM & COLLECTION AREA

Excerpt: Ink Architects, DA06 18/04/2017 - Basement Floor Plan

APPENDIX BSUTHERLAND SHIRE EQUIPMENT SPECIFICATIONSAPPENDIX B.1BIN DIMENSIONS AND SPECIFICATIONS

Mobile containers with a capacity from 500L to 1700L with four wheels

Dome or flat lid containers

Bin Type	660 Litre	770 Litre	1100	1300	1700
	MGB	MGB	Litre	Litre	Litre
			MGB	MGB	MGB
Height	1250	1425	1470	1480	1470
Depth	850	1100	1245	1250	1250
Width	1370	1370	1370	1770	1770

APPENDIX B.2 SIGNAGE FOR WASTE & RECYCLING BINS

WASTE SIGNS

Signs for garbage, recycling and organics bins should comply with the standard signs promoted by the Department of Environment and Heritage.

SAFETY SIGNS

The design and use of safety signs for waste rooms and enclosures should comply with AS1319 Safety Signs for Occupational Environment. Safety signs should be used to regulate and control safety behaviour, warn of hazards and provide emergency information, including fire protection information. Below are some examples. Each development will need to decide which signs are relevant for its set of circumstances and service provided.

Examples of Australian Standards:

Australian Standards are available from the SAI Global Limited website (www.saiglobal.com). Source: Better Practice Guide to Waste Management in Multi-Unit Dwellings, 2008, DECC

APPENDIX B.3 TYPICAL COLLECTION VEHICLE INFORMATION Collection vehicles

Waste collection vehicles may be side loading, rear-end loading, front-end loading or crane trucks. The size of vehicle varies according to the collection service. Thus it is impossible to specify what constitutes the definitive garbage vehicle. Developers should consult the local council and/or relevant contractors regarding the type of vehicle used in that area.

The following characteristics represent the typical collection vehicle, however, these are only for guidance.

It may be possible to engage a collection service provider to use smaller collection vehicles to service developments with narrow roadways and laneways, or for on-site collections. However, as the availability of smaller vehicles to make services varies between councils and private contractors, wherever possible the development should be designed to accommodate vehicles of a similar size to that reported below.

Rear loading collection vehicle

Rear loading collection vehicle	
Length overall	10.24m
Width overall	2.5m
Operational height	3.5m
Travel height	3.5m
Weight (vehicle only)	12.4 tonnes
Weight (payload)	9.5 tonnes
Turning circle	18.0m

This is commonly used for domestic garbage and recycling collections from MUDs. It can be used to collect waste stored in MGBs or bulk bins, particularly where bins are not presented on the kerbside.

Side-loading collection vehicle

Side-loading collection vehicle	
Length overall	9.64m
Front overhang	151m
Wheelbase	5.20m
Rear overhang	2.93m
Turning circle kerb to kerb	17.86m
Turning circle wall to wall	20.56m
Front of vehicle to collection arm	3.8m
Maximum reach of side arm	3.0m
Travel height	3.63m
Clearance height for loading	3.9m

This is the most commonly used vehicle for domestic garbage and recycling collections. It is only suitable for collecting MGBs up to 360 litres in size.

APPENDIX CWASTE MANAGEMENT EQUIPMENT SPECIFICATIONSAPPENDIX C.1TYPICAL BIN MOVER

Typical applications:

- Move trolleys, waste bin trailers and 660litre/1100 litre bins up and down a <u>ramp incline</u>. Ideal for Apartment Buildings (to move waste bins located at a basement level to road level).
- Quiet, smooth operation with zero emissions and simple to use, no driver's licence required

Features:

- Up to 1 Tonne on a ramp surface (depending on ballast and incline)
- Anti-rollback system on slopes
- Foot print: 1548L x 795W x 1104H (handle in the drive position)
- Pin Hitch is standard however alternate hitching options may be available to suit your specific application (e.g. tow ball)

Safety Features:

- Intuitive paddle lever control
- Stops and repels the unit if activated when reversing.
- Site assessment recommended to assess ramp incline steepness (See Useful Contacts)

Sydney Head Office 44-46 Gibson Ave Padstow NSW 2211 | PH: +612 9780 3500 | Fax: +612 9707 2588 Website: www.elephantsfoot.com.au | Email: info@elephantsfoot.com.au Offices in Victoria & Queensland – Toll Free: 1800 025 073

Space requirements for a typical worm farm for an average household:

There are many worm farm arrangements. The above dimensions are indicative only.

Height - 300mm per level

Width - 600mm

Length - 900mm

APPENDIX C.2 TYPICAL WORM FARM SPECIFICATIONS

Worm farms

SOURCE: Department of Environment and Climate Change NSW 2008, Better Practice Guide for Waste Management in Multi-Unit Dwellings

APPENDIX C.3 TYPICAL APARTMENT STYLE COMPOST BINS

Apartment Style Compost bin – available from hardware stores

Suitable for:

- Vegetables
- Coffee grounds and filters
- Tea and tea bags
- Crushed eggshells (but not eggs)
- Nutshells
- Houseplants
- Leaves
- Cardboard rolls, cereal
- Boxes, brown paper bags

- Clean paper
- Shredded newspaper
- Fireplace ashes
- Wood chips, sawdust,
- Toothpicks, burnt matches
- Cotton and wool rags
- Dryer and vacuum cleaner lint
- Hair and fur
- Hay and straw

APPENDIX C.4 ELECTRIC ORGANIC COMPOST BIN

Product Specifications

Decomposition Method	Fermentation by microorganisms	
Decomposition Capacity	2 metric tonnes per year" (4 kg per day")	
Rating	220-240 V 50/60 Hz - 1.1 A	
Decomposition Time	24 hrs	
Operating Temperature	0C and 40C.**	
Deodorisation Method	Nano-Filter system	
Maximum Power	210 W	
Power Usage	Average 1 kwh per day	
Weight	21 kgs	
External Dimensions	w 400 mm d 400 mm h 780 mm	

Food Waste Handling Capacity - based on an optimal operating environment.
 Ambient temperature range of area where unit may be installed.

SOURCE: Closed Loop Domestic Composter - See Useful Contacts

* Products and specifications may change according to manufacturer.

SOURCE: SULO Environmental Technology